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Goals of This Presentation

To briefly outline some of the:

Trends in advanced reactor analysis methods

Challenges faced by new analysis methods

Implications of modern computing platforms

LWR analysis will be used as the framework for this introduction, and |
apologize to those whose work is not mentioned due to the time constraints.



Reactor Physics Goals

To obtain a precise solutions to the Boltzmann neutron transport
equation(s) for any reactor design and operational condition

(steady-state, depletion state, or transient condition)

To accommodate arbitrary-fine spatial variations in material
properties provided by other physics fields

(temperature, density, nuclide inventory, geometric distortions, etc.)

To account for known and unknown sources of uncertainty on
predicted core physics parameters

(nuclear cross sections, construction deviations, corrosion/crud
deposition, irradiation growth, etc.)
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Boltzmann Transport coupled to Fuel Conduction/Depletion/Fluid Flow
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Traditional Nodal Models: Eliminating The Weak Links

Lattice resonance approximations (isotope interference, spatial self-shielding)
Assembly homogenization approximations (typically single-assembly geometry)
Equivalent homogenized baffle/reflector data

One characteristic thermal-hydraulic channel per assembly
Simplified fuel depletion/spectrum interactions
Factorization approximations in pin power reconstruction

Few-group homogenized diffusion theory
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Current Nodal Diffusion Models Reconstruction




Using Monte Carlo to Replace Deterministic Lattice Calculations

Serpent

a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code

Huge Advantages:
Eliminates many lattice resonance approximations -
Integrated and accurate nuclide depletion module @o 3 gsggggggsg
On-the-fly cross section temperature treatment ceccssecssesssses | SOOO M 00S
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Remaining Challenges:
Avoiding multi-assembly geometries
Calculations must remain user-friendly

Accurate definition of multi-group homogenized diffusion coefficients,
transport cross section, or Py scattering moments

Incorporation of many subtle features of “traditional” homogenization
Direct tallying of few-group data without using many-group tallies

Traditional B, spectrum calculation and subsequent diffusion coefficient or
transport cross section collapse to few groups

Reducing execution times and/or resources requirements



Trend to Move From Current Models = Higher-Fidelity Tools

No up-front lattice calculations (1000s vs. burnup, history, temperature, rods, etc.)

No homogenization of fuel assemblies or fuel pins

No baffle/reflector calculations for generation of equivalent reflector data

Fuel pin and channel level hydraulic feedback
Pellet-level isotopic depletion and Doppler feedback
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AP1000 INSILICO Testing of 3D Homogenized Pin-cell SP,,

RMS/Max /i
- AO  AK, AAO AP Axial 'z'g";’\r;" MS/Max Rg"f’(m Agpt')‘t’t
0, 0, “ bE)
(%)  (pcm) (%) N(?/‘c,l)e (%) (%) (%)
SHIFT 1.00141 -0.8 Ref Ref Ref Ref Ref Ref
KENO 1.00090 -0.7 -50 -0.1 0.1/0.2 0.4/1.0 0.5/3.0 1.0
INSILICO 1.00078 -1.7 -63 -0.9 1.0/2.9 0.4/0.7 1.2/5.8 1.9

MA (Gray) Fully Inserted
MB (Gray) ~ 60% Inserted
AO (Black) ~ 15% Inserted
Boron at ~1250 ppm

HZP Temperatures

The AP100 results are far more accurate than most expect or can explain.

Homogenized SP has had limited over many years with mixed success.
But many choose not to agonize over applicability of pin-cell homogenization
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FuIIy-ResoIved Determlnlstlc 2D Transport Calculations

2D MOC in use for >10 years

7 [ ey g oy e g Advantages:
@%@mm%@@@@@%%%@ - No up front lattice calculations
52 Ll %* sl - Very fine radial mesh solutions
: ' I e - No homogenization approximations
- Depletion on sub-pin basis

E@m%@%ﬁ%%@@é% % - Local T-H data can be treated

%’gwggm %lﬁmﬁg@‘ o - Radial mesh is geometrically

: .', _;.g‘; ﬁﬁ%@ ; constrained by physical geometry
e i - Few core-hours execution per
state-point have been achieved

Disadvantages:
- Deterministic resonance models
- 2D applications are very limited




Full-Core FuIIy-ResoIved 3D Determlnlstlc Transport Calculations

ooooo
ssiiee

el 6 5 "] 3D MOC seems very natural

i ; : Challenges:

o », - Axial axial source mesh and

fine ray spacing: x1000
- More polar angles needed in 3D: x5
- 12| - Domain decomposition for memory

------------------

3-D Discrete S, (LD, FEM, EP)

Advantages:

- High-order spatial approximations
may be advantageous axially

Disadvantages:

i - Meshing for air gaps, IFBA regions
i require far more mesh than MOC

i .
ooooo
Pt

Bottom line: No deterministic LWR transport
solution (converged in space, and angle) with
credible energy resolution has been published.
Problem size is currently overwhelming




MC21 (KAPL/BETTIS) Full-Core Monte Carlo Calculations
" | 3D MC is attractive:

Advantages:
- Direct resonance treatment
- No meshing to resolve flux gradients

- Fine spatial mesh coupling for thermal-
hydraulic and depletion physics

Challenges:
- Cross section temperature modeling

- Converging source distributions in
high dominance ratio LWRs

- Obtaining reliable estimates of local
uncertainties

- TB size tallies for depletion

- ~50,000 of core-hours per step

Figure 17. MC21 pin wise relative power density at day 92.

Bottom line: Monte Carlo has, at least temporarily, surpassed deterministic
methods for fully-resolved reactor depletion with thermal feedback
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Bottom line:

MC spatial results do not
converge as as 1/sqrt(N)
Traditional tally uncertainty
estimates are unrealistic
Independent realizations
are needed to be confident
Massive # of neutrons are
required per batch
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Be Mindful of the Difference Between Scalability and Efficiency

- Currently Monte Carlo cross section linear interpolation consists of the following sequence:
Zero the material macroscopic cross section
Loc;p over 400 Isotopes

—

Loop over 3 reaction types

Load the energy vector needed for a binary search

A small number of FLOPS and ifs (e.g. ~10) for a binary search for data index

Load cross section data

4. A few FLOPS for actual data interpolation

5

A few FLOPS to add microscopic to macroscopic cross section
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HPC Flops Are “Free”: If Data Movement from Cache/Memory Is Avoided
Simple point-wise data tables for temperature interpolations

— pendfb7/U238:102 92-U -238
—_— pendfb7/Zr90:102  40-Zr- 90
— pendfb7/Fe56:102  26-Fe- 56
—_— pendfb7/016:2 8-0-16
pendfb7/Gd155:102 64-Gd-155
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More Needs To Be Done To Make Monte Carlo Practical

Inactive cycle convergence estimators more reliable than Shannon
Entropy

Variance estimators that treat batch correlation
Improved methods for accelerating convergence of active cycles
Efficient Doppler Broadening of full energy-range cross sections

Domain decomposition (or functional equivalent) for massive tallies
(nuclide depletion of sub-pellet spatial regions)

Improved data structures to replace ACE-type formats, eliminate
redundant data, and accommodate new functional data types

Execution time remain a primary obstacle for broad-scale MC reactor applications




2D/1D Methods (n-TRACER, MPACT, DeCART, etc.)

3-D CMFD Calculation with Axial SP3 Kernel
to Resolve Global Balance and Generate 3-D
Power Distribution)
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Planar MOC Calculations

to Generate Plane-wise Pin-cell Homogenized XS
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3D CMFD Solver
incorporating with Axial SP3 Nodal Method
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Planar MOC Solver

In-stream sub-group resonance models

Sub-channel thermal fluid/heat conduction

Non-uniform pellet temperature profiles

Predictor/Corrector nuclide depletion
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SNU Reactor Physics Laboratory (SC\/‘)



Prof. Han Gyu Joo (Seoul National) n-Tracer Comparisons with Plant Data
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Remember It Is 2014 - not 1970. Manufactured Solutions and
Numerical Benchmarks Are Useful, But No Longer Sufficient

Benchmark o
Evaluation

MIT And

Validation of
Reactor
Simulations

RELEASE rev. 1.0.1

MIT Computational Reactor Physics Group
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BEAVRS: Two-Cycle Operational LWR Benchmark

- Cycle-1 Hot Zero Power (HZP) can be simulated without feedback

- Hot Full Power (HFP) requires neutronic/fluid coupling & cross section feedback
- Cycle simulation required detailed nuclide depletion and equilibrium Xenon

- Cycle-2 requires core fuel assembly shuffling of deletion data Detector Signal [
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- Comparison with measured data provides useful V&V/UQ testing of methods/codes
- Benchmark provides a challenge for both deterministic or Monte Carlo neutron

transport — coupled to fuels behavior, nuclide depletion, and core/vessel fluid flow.
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VV/UQ and the Real World

BEAVRS in-core fission rate distributions display a nearly pure x-y linear tilt:
- Tilt is +/- 6.0% in both x and y directions at HZP BOC1

- Tilt becomes +/- 2.5% at HFP conditions

- Tilt rapidly depletes to +/-1.0% ] HZP BOC-1 -

Directional Tilts vs. Cycle Burnup

1 1
—»—Tiltin X Direction
0.07 | —#—Tiltin ¥ Direction H

Planar Tilt of Measured Fission Rate

:0:02: Rector Cycle Depletion

1 1 1 1 1 1
0 2 4 [ 3 10 12 14
Cycle bumup (MWdlkg)

Spatial uncertainties are driven by geometrical, not cross section uncertainty




What Is Needed For Neutronics UQ

Methods for quantification of not only random geometrical
uncertainties, but also systematic manufacturing/construction
geometrical deviations - that are directly observable.

Methods for quantification of geometrical distortions from CRUD
deposition and irradiation-induced fuel skeleton growth

Depletion reactivity uncertainties from cross sections that account
for the fact that Evaluated Nuclear Data has been previously
“adjusted” by evaluators to produce LWR cold critical eigenvalues
of nearly unity. (e.g., >500 pcm uncertainties are not realistic)

Bottom Line: We need UQ that gracefully handles multi-physics effects
and produces realistic (not wildly conservative) uncertainty estimates.




Multi-physics Applications are Driving Current Developments

- While full spatial resolution reactor neutronics has yet to be fully realized,
numerous high-accuracy methods have been fully developed and deployed.

- Achieving coupled multi-physics simulations with balanced computational
effort between the physics modules is key to continued progress.

- Multi-physics tool/toolkits (e.g., SALOME, MOOSE, VERA, etc.) being
developed/deployed show promise for efficient multi-physics implementation
with minimal engineering burden. Such developments will require substantial
time and funding to achieve full maturity.

- We must assure that new models/tools are more accurate that existing tools,
and are practical in the end-user’s work environment.




Remember What Nuclear Plant Owner/Operators
Desire From Reactor Physics

To have sufficiently accurate knowledge of reactor behavior to
enable safe and economic operation of every nuclear plant

(over the plants anticipated and/or extended lifetime)

To be confident that reactor physics personnel can successfully
respond to many yet unknown operational plant challenges

(plant problems, changes in economics, licensing, plant availability)



