MOVE THE WORLD FORWARD	MITSUBISHI HEAVY INDUSTRIES GROUP
2024年炉物理夏期セミナー	
核定数テーブルの圧縮、 RSE法による共鳴計算	
MHI 山本 真人	
三菱重工業株式会社 2024年9月26日 © 2024 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.	★三菱重工

目次	★三菱重工
1. ROMの概要	
2. 断面積テーブルへのROMの適用	
(1)概要	
(2)理論 (3)適田例	
3. 共鳴計算へのROMの適用	
(1)概要	
(2)理論	
4. 本講義のまとめ	
© 2024 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.	2

(2)何故ROMが必要?(4/4) ・ ・ ・ ▲■	菱重工
■炉心核設計計算の現状:格子計算と炉心計算の分離	
• 格子計算:エネルギー多群、非均質	
• 炉心計算:エネルギー少数群、均質	
■炉物理ロードマップ2024年版(https://rpg.jaea.go.jp/else/rpd/roadmap/rm/rpg_rm2024.pdf)	
 実効核定数計算機能、中性子輸送計算機能、核種燃焼計算機能、動特性計算 機能等に関するモデルの詳細化による解析手法起因の不確かさの低減は、実機炉心 の予測精度向上に貢献する可能性があり、安全余裕の増加が期待できる。(中 略)一方で、解析モデルの詳細化は計算コストの増加に直結することから、大規模並 列計算技術や次元圧縮モデル等の計算科学分野の成果との組合せによる高速化も 実用性の観点から重要である。 	
■ROMの適用が期待される詳細な炉心核設計計算(一例)	
 エネルギー多群、燃料棒単位の炉心計算(メモリ増加への対応) 	
⇒第3章で紹介	
 エネルギー超多群、燃料棒単位の全炉心共鳴計算(計算コスト増加への対応) 	
⇒第4章で紹介	
© 2024 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.	10

	(3))適用例:検証言	†算条件	▲ 三菱重工			
Θ	基	底関数作成					
		減速材条件を変化させ	た超詳細群セル計算				
	⇒	⇒ 燃料中の中性子スペクトル(減速材:なし~過減速):23個					
	減速材中の中性子スペクトル(基準状態):1個						
	⇒ 特異値分解により24次までの基底関数を得る						
Θ	● 共鳴計算·輸送計算						
	● 体系:PWRウラン(4.8wt%濃縮度)、MOX(代表組成)のピンセル・集合体体系						
		● ほう素濃度:1000ppm					
		▶ 減速材密度:0.71(高温全出力)、0.4、0.1g/cm ³					
		▶ 核データライブラリ:ENDF/B-VII.0					
	😑 高エネルギー側の非分離共鳴、核分裂、熱エネルギー領域は従来の等価原理を適用						
			共鳴計算	輸送計算			
		RSE法	RSE法	172群MOC			
		参照解:超詳細群計算	12万群超詳細群計算 (等価ダンコフ係数セルモデル*)	172群MOC			
6	*[5] K. Yamaji, et. al., J Nucl Sci Technol. Vol.55 756-780 2018 "山路 和也, 他,「三菱3次元詳細輸送計算コードGALAXY-Zの開発(4)RSE法を用いた共鳴計算」日本原子力学会2020年春の年会"より引用 © 2024 MITSUBISHI HEAVY INDUSTRIES, LTD. AI Rights Reserved.						

_(3)適用例∶検証 無限増倍率(kinf) ㅅ					★三菱	重工	
● PWR17x17集合体							
 連続エネルギーモンテカルロコードMVPとの差異* 							
	差=In(超詳細群計算 or RSE / MVP)×100 [']	
	河油村家庄	MVPとのkinfの差[%dk/k]					
	减速的否定 [g/cm ³]	ウラン		MOX			
		超詳細群	RSE	超詳細群	RSE		
	0.71	-0.03	-0.03	-0.08	-0.09		
	0.4	-0.05	-0.04	-0.13	-0.12		
	0.1	0.04	0.08	-0.07	-0.01		
* 統計誤差 kinf<0.01%dk/k							
*山路和也,他,「三菱3次元詳細輸送計算コードGALAXY-Zの開発(4)RSE法を用いた共鳴計算」,日本原子力学会2020年春の年会"より引用 ○2024 MITSIBISH HEAVY INDUSTRIES ITD All Brends Reserved 45					引用 45		

