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The title of this paper alludes to two different meanings of “random”. First, the phrase “Random 

walk” refers to the fact that I selected, at random, a few topics which I myself found fascinating, 

surprising, and hence hopefully entertaining, in the hope that the reader will also find them 

entertaining. The phenomena that will be described and discussed here will reveal some 

unexpected features, which in some cases are puzzling or even counter-intuitive, and their 

explanation sometimes discloses commonly accepted misbeliefs or misunderstandings. I always 

found such cases very intriguing. Inevitably, such subjects do not constitute a continuous story, 

rather they are picked randomly, hence the first meaning of the phrase “random walk” in the title.  

Curiosities similar to the types that will be discussed in this note are usually published as a 

“Letter to the Editor” or a “Technical Note”, since they do not contain new research results. A few 

examples are given in Ref [1] (meaning of the flux) and Refs [2] - [4] (number of collisions until 

slowing down). The readers are encouraged to check up these letters or technical notes. Many are, 

in contrast to the present article, quite short, often only one page, hence the “output/input ratio” in 

intellectual entertainment is quite high. I can also recommend the readers to watch out for such 

short notes by themselves (although, sadly, the number of such notes seems to be decreasing).  

The second reason why the word “random” appears in the title is because the curious facts and 

phenomena which will be discussed here concern the randomness of neutron transport, manifesting 

itself in the fact that the number of neutrons in the system, or the number of detector counts during 

a time period, is a random number or random process (hence often referred to as neutron 

fluctuations or neutron noise). Random processes in general, whether about neutrons or other 

processes, have themselves fascinating and surprising properties. The subjects discussed in this 

small essay will hopefully also expedite a wider understanding of the properties and use of  neutron 

fluctuations in nuclear systems.  

With this introduction, I invite the reader to follow me on the random walk in the fascinating 

world of random particle transport.     

The ubiquity and importance of fluctuations 

Before turning to reactor physics and neutron fluctuations, a few words about randomness and 

fluctuations in general. The randomness treated in this essay is not related to the intrinsically 

stochastic description of quantum mechanics of individual particle processes, where everything 

can only be formulated in terms of the so-called wave function, which evolves deterministically, 

but which only has a probabilistic interpretation. We will deal with macroscopic classical systems, 

which usually have a very large number of freedom (such as a system of 1024 particles), where it 

is impossible to specify each variable with the desired accuracy, hence a statistical description is 

necessary. Thus, we cannot tell the outcome of the energy loss of neutrons in the laboratory system 

for an individual collision, only over a large number of collisions. In some cases quantum 

mechanics also plays a role, such as whether a reaction will be absorption or fission, and in the 

latter how many neutrons will be released. However, this fact will not require a quantum 

mechanical description, only the knowledge of the probabilities or probability distributions of the 
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corresponding processes and variables (such as the probability distribution of the number of 

neutrons in fission).  

Since most systems in the macroscopic (hence observable) world are many-body systems, with 

some exaggerations one can say that everything in the world is random - but often we do not “see” 

the randomness (the fluctuations are too small). The fluctuations are invisible because the 

measurement does not have the proper resolution. Once we have a sufficiently sensitive equipment, 

we can see that most everyday processes (such as the temperature in a well-controlled isolated 

room) shows tiny, but definite fluctuations around the mean value.  

The randomness, or the fluctuations, are often considered a nuisance, and this is expressed with 

the word “noise” which, in the world of acoustics, is surely a phenomenon that with the random 

distribution of its frequencies disturbs the enjoyment of music, consisting only of discrete 

frequencies. However, more often than not, through their rich information content, these 

fluctuations are very useful, and in biological processes even necessary for the existence of life.  

My favourite example to support this last statement is the heart rate variability, which is based 

on the ECG (electrocardiogram) signals that can be easily measured. For a healthy person, they 

look periodical, such as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

The heartbeats are characterized by the large peaks (denoted in medical praxis with the letter 

“R”), and the time between two beats, the “interbeat intervals” are denoted in the figure as RR1, 

RR2 etc. Of course, a large variation of the interbeat intervals is an indication of heart disorder, but 

the opposite is not true “ad infinitum”. Namely, one would be tempted to think that for a person at 

total rest, these intervals are perfectly equal, and the healthier a person is, the more constant the 

interbeat intervals are. The “perfectly healthy” person in this concept would be one whose RR 

interval periods are exactly the same. However, a doctor would say that such a person is already 

“dead”, because the interbeat intervals must fluctuate with all living organisms. In the terminology 

of a lay mind, one could say that the interbeat intervals must vary such that the heart is “training” 

to be able to adjust the heart’s beat to meet a change in the physical load (running, lifting weights 

etc.).  

Fig. 1 Heartbeat signals 
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Whatever the explanation of these fluctuations, plotting the RR intervals as a function of the 

beat number, one apparently gets a totally random process, seemingly without any structure (see 

the right hand side of Fig. 2).  

However, a wavelet analysis readily reveals a 

self-similar structure (see Fig. 3 to the right).  

The curve in the top is the variation of the 

interbeat signals, the lower two figures show 

their wavelet transforms, which indicates a self-

similar structure: the lowermost figure is an 

enlarged view of the area in the red box in the 

middle figure, which has the same structure as 

the whole of the middle figure. Such a self-

similar structure exhibits a fractal property, 

with a corresponding fractal dimension. 

Experience shows that for healthy persons, 

there is one single fractal dimension associated 

with the heartbeat data; however, the fractal 

structure of the interbeat intervals for persons 

with incipient heart failures changes, e.g. 

develops a bi-fractal structure, which can be 

used both for early detection of beginning heart 

failures, as well as to determine the type of heart 

failure. The analysis of heartbeat signals and 

their use of diagnostics is not very much unlike 

of that of analysing process data from nuclear 

reactors; so much so, that nuclear engineers 

have also been involved in analysis of medical 

data. At several nuclear engineering conferences there are sessions on analysis of medical signals. 

The present author has also endeavoured such a study [5].   

One can easily find some intuitive illustrations of the use of the rich information content of 

random processes. Take as an example birds flying in flocks. The paths of the individual birds 

look disordered and random, as they constantly change directions, partly to avoid collisions with 

each other. But they succeed in this exceptionally well – birds in a flock do not collide with each 

other unintentionally. As a contrast, it often happens that birds are killed by collisions with cars. 

On first sight this might feel surprising; a car usually moves on a straight line with constant speed, 

Fig.3 Interbeat intervals and their wavelet transform 

Fig. 2. Heartbeat signals (left) and a sequence of interbeat time intervals (right), showing a random behaviour 
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so one would think it is very easy to predict its trajectory and hence avoid it. But the bird brain 

does not work this way; the movement on a straight line with constant velocity has too little 

information. A “noisy” movement is much richer in information, and hence the brain of the birds 

processes it easier. Of course, in order to do that, they have to be able to interpret the random 

character of the movement; but apparently it better suits the brain to process a more complex 

information to make predictions than that of a simple process which is poor in information. 

Another example is the vision of a bird of prey hovering above the field. It will often discover a 

prey only when the prey is moving, even if very chaotically. A prey standing still often avoids 

being detected, because it sends too little information compared to that of a moving prey. 

In what follows, we will see how the more complex character of neutron chains in a multiplying 

medium (compared to the emission of neutrons from a radioactive source) help us to extract 

information about the system, once we know how to interpret the increased complexity of the 

underlying physical process. Soon we will also encounter a puzzling observation, which shows the 

beautiful depths of the phenomenon, and that of random processes in general.  

Family trees and neutron chains as branching processes 

Neutron chains and family trees have much in common what regards their random temporal 

evolution. They belong to the category that mathematicians call “branching processes”. The 

branching simply means that at random time points some events will occur, in which one entity 

will be converted into a random number or new entities (“descendants”). Here the probability of 

having at least two descendants must be larger than zero, otherwise the process in not branching. 

In this respect “branching” is synonymous with “multiplication”. On the other hand, the 

probability for a given event that there will be no descendants can also be larger than zero, which 

means that the process can also die out. For neutrons, the branching means fission, where one 

incoming neutron can induce the emission of a random number of new neutrons, zero also allowed 

(especially if absorption is also taken into account). In a family tree, the events are not associated 

with time, rather with generations, as will be later seen more in detail. The randomness of this 

process is expressed in the intuitively clear fact that even if the average of descendants is one, the 

process can still either grow or die out.  

This shows that the statistical properties of a branching process are more involved than the case 

of neutron emission from a radioactive source. This latter has Poisson statistics, which is 

“boringly” simple; it is defined by one single parameter, the emission intensity, and hence all 

statistical moments (mean, variance etc.) carry the same information (e.g. the variance is equal to 

the mean). If we know the mean value, we know everything about the statistics of the process. 

This is a consequence of the fact that the individual events (particle emissions) are independent.  

The reason for the more complicated, and hence more interesting statistics of a branching 

process is that its random variables, such as particle numbers, are not independent, rather they are 

correlated (their covariance, i.e. the joint probability of two variables minus the product of the 

probability of the two variables, is not zero). Here we already arrived to one of the rather subtle 

properties of branching processes which the reader might like to contemplate on. For a neutron 

chain, i.e. a collection of all generations started by a single neutron, in each individual fission, the 

number of new neutrons is independent of any other fissions in the system; and for the new 

neutrons born in fission, their fate is independent from each other in the sense that both the time 

for the next fission, as well as the number of new neutrons born in their respective fissions, are 

independent from each other. The independence of the development of the individual chains is 

actually a basic assumption which we set up for the equations that describe the evolution of the 

probability of the number of the neutrons in the system (so called master equations, or Chapman-

Kolmogorov equations). Yet, due to the fact that they were born simultaneously, will incur 
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temporal correlations in the number of the neutrons at different times in the system. This is 

obtained from the solution of the master equations, set up for the evolution of the probability.  

The apparent contradiction that the independence of the events in the process still leads to  

correlations in the numbers of the entities in the process might be illustrated qualitatively by stating 

that although two twins, born simultaneously, will die independently of each other, none of them 

will survive the other with a thousand years (or hundreds of generations). Their fates, although 

controlled by independent events, will strongly overlap. It is the common birth, the branching, 

which will create correlations between the number of descendants at a given time, despite that the 

individual life events are not affecting each other.  

The significance of the correlations in the statistics of random processes, in comparison with 

that of the independent processes, obeying a pure Poisson process, can be described as follows. 

Positively correlated processes, i.e. when the presence of one entity indicates the increased 

likelihood of the presence of another entity (such as in a family tree or a neutron chain), have 

“over-Poisson” statistics, which simply means that the variance is larger than the mean (the relative 

variance is larger than unity). Random processes that are subject to a conservation law, have the 

property that the presence of one entity excludes or diminishes the probability of the presence of 

another entity, show negative correlations. Such processes have a sub-Poisson variance, i.e. the 

variance is smaller than the mean.  

With this introduction we will now explore some properties of the branching processes by the 

story of the mathematical treatment of the extinction of family lines.  

The extinction of family names 

The question of the extinction of the family names dates back to the early 19th century and is 

associated with the Reverend Henry William Watson, clergyman, mathematician and alpinist, and 

the mathematician Francis Galton. The story is very entertainingly described by D. G. Kendall in 

an essay presented at the 100th anniversary of the London Mathematical Society [6], as well as in 

the book of T. E. Harris [7]. Galton became interested in the observation by a certain M. Alphonse 

De Candolle (1806-1893) regarding the decay of famous families, “men of note”: peers, judges, 

and the like. De Candolle put forth the hypothesis, or question, whether the extinction of the family 

names of such noble families is caused by the fact that “a rise in physical comfort and intellectual 

capacity is necessarily accompanied by diminution of fertility”.  

Galton did not like this conclusion (as I guess most of us having a profession requiring a certain 

intellectual capacity would not like either) and asked the help of Watson who formulated the 

problem in mathematical terms and gave a solution. Before getting to this, I have to attach the 

remark that some aspects of the formulation and interpretation of the problem reflect the standards 

of society as it was then, with a very different view on gender equality as it is today. For instance, 

the extinction of the family names is purely associated with the male line; an assumption that is 

not valid any longer.  

A simplified version of Watson’s statement of the problem is then as follows:  

“A large nation, of whom we will only concern ourselves with the adult males, N in number, 

and who each bear separate surnames, colonise a district. Their law of population is such that, in 

each generation, 𝑝0 per cent of the adult males have no male children who reach adult life; 𝑝1 have 

one such male child; 𝑝2 have two; and so on. Find (1) what proportion of the surnames will have 

become extinct after r generations; and (2) how many instances there will be of the same surname 

being held by m persons.” (An answer by Kendall, with an interesting side-line, will be given 

later). 
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A simpler task, which Watson solved, is that of the extinction probability q. That is, starting 

with one family, what is the probability, that when r goes to infinity, the family becomes extinct?  

Instead of giving Watson’s solution, which is somewhat complicated, we will quote here a 

simpler one, which was provided by Agner Krarup Erlang in 1929. He wrote down what we today 

would call a backward type master equation for the extinction probability q. He argued that this 

probability is equal to the probabilities of the mutually exclusive events that: either there will be 

no males in the first generation (with probability 𝑝0); or there will be one male descendant with 

probability 𝑝1, which then has to die out (with the same extinction probability q that we are looking 

for); or there will be two male descendants with probability 𝑝2, which then both have to die out; 

since they die out independently, this probability is equal to 𝑞2; and so on. This can be written as  

𝑞 = 𝑝0 + 𝑝1𝑞 + 𝑝2 𝑞2 + ⋯ = ∑ 𝑝𝑛 𝑞𝑛                                         (1)

∞

𝑛=0

 

The right hand side of this equation is actually the definition of the generation function of the 

probability distribution 𝑝𝑛. The generating function 𝑔(𝑧) of a discrete probability distribution 𝑝𝑛 

is a function of the continuous variable z, which is defined as  

𝑔(𝑧) = ∑ 𝑝𝑛 𝑧𝑛                                                               (2)    

∞

𝑛=0

 

                                 

The generating function can be interpreted as a transform of the discrete probability distribution 

𝑝𝑛 into the continuous function 𝑔(𝑧). All generating functions have the property of 𝑔(1) = 1, 

which can be easily confirmed from Eq. (2). Further, from the generating function, the moments 

of the probability distribution can be easily obtained. For instance, the first moment (expectation) 

is obtained as  

〈𝑛〉 ≡ 𝜈 = ∑ 𝑛 𝑝𝑛 = 𝑔′(𝑧)|𝑧=1                                                   (3)

∞

𝑛=0

 

                                    

With the concept of the generating function, the extinction equation, Eq. (1), can be written as 

𝑞 = 𝑔(𝑞)                                                                  (4) 

This is a transcendental equation, since 𝑔(𝑞) is a polynomial in q, whose order is equal to the 

maximum number of descendants which have a non-zero probability. However, a qualitative 

solution, which will actually give an exact quantitative solution with a graphical interpretation, 

shown in Fig. 4. The straight line (orange) at 45° represents the left hand side of Eq. (4), and the 

curve (blue) represents the right hand side of (4). The solution is the q vale were the two lines 

intersect. Here we note that 𝑔(𝑞) is always a convex function, since all coefficients in its Taylor 

series are positive (they are the probabilities 𝑝𝑛). Since 𝑔(1) = 1, it follows that   𝑞 = 1 (extinction 

with 100% certainty) is always a solution of the extinction equation. Interestingly, Watson believed 

(erroneously) that this is the only solution, i.e. all families will always die out. We will see that 

this is not always the case, and is valid only to subcritical or critical processes. 

Assuming that   𝑔(0) = 𝑝0 > 0 (otherwise the process never could die out), as the graphical 

illustration on Fig. 4 shows, there are two distinct cases. As long as 𝑔′(𝑧)|𝑧=1   =  𝜈 ≤ 1, 𝜈 being 

the average number of male descendants (left hand side of the figure), the only root of the 

extinction equation (4) is 𝑞 = 1, that is the process (the family line) will die out with 100% 

certainty. If 𝜈 > 1, i.e. the average number of male descendants is larger than unity, then the 

extinction equation has two roots,  (right hand side of the Figure); one is less than unity (𝑞 < 1), 
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the other is the known solution 𝑞 = 1. In this latter case, the relevant solution is the smaller root, 

𝑞 < 1, i.e. the family will not die out with 100% certainty. (The readers who are curious of the 

proof why 𝑞 < 1  is the “relevant root”, can find the answer in a recent note (Ref. [8]). This is the 

root which Watson overlooked.  

 

 

 

 

 

 

 

 

 

 

 

 

The extinction and multiplication of neutron chains in a critical reactor 

At this point we switch from families to neutrons and interpret the above in terms of neutron 

chains. The only change is that the male descendants will be replaced by neutrons. The above 

results say that in a multiplying medium, for 𝜈 ≤ 1, i.e. subcritical and critical systems, a neutron 

chain started by a single neutron will die out with 100% certainty, whereas for supercritical 

systems (𝜈 ≥ 1), the probability that the chain will die out is less than 100%.  

In the continuation, we will focus on exactly critical systems, with 𝜈 = 1 .  There, one notices 

an apparent contradiction. In a critical system the expectation of the number of neutrons is 

constant. Hence, on the average, a single starting neutron will “live forever”. On the other hand, 

the above results show that in a critical system, all neutrons will die out with 100% certainty.  

But this is not the end of the story yet. It is easy to show (but we abstain from a derivation) that 

in a critical system, the variance diverges; it tends to infinity linearly with the number of 

generations (for families) or with time (for neutron chains). This latter result, i.e. that the variance 

increases linearly with time is also valid to a similar process, the random walk, and in this context 

it is called the “Einstein relation”. The derivation for neutron chains can be found in [9] and [10].  

The divergence of the variance at criticality has long puzzled the nuclear engineering 

community. This would mean that a reactor, operating at critical, would sooner or later experience 

a large power excursion. But such a case, a sudden, uncontrolled burst of the neutron flux in a 

critical reactor, due to purely probabilistic reasons, has never been observed. In Ref. [9] there is a 

detailed discussion of the possible reasons. The most obvious is that it is the reactor control, not 

taken into account in the above considerations, which prevents large deviations from the desired 

flux level. Another suggestion is that a stationary reactor is never critical, only close to critical, 

because there are always extraneous neutron sources, not arising from the chain reaction, such as 

cosmic radiation, decay of fission products etc. And as it can also be easily shown, in a subcritical, 

source-driven reactor (a reactor in which the chain reaction is maintained by an extraneous source), 

the variance remains finite, and asymptotically constant. 

Fig. 4. Solution of the extinction equation 
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We will show now that, contrary to the standard belief, there is no need to refer to reactor 

control or extraneous sources to explain why divergence at criticality has not been observed, the 

explanation lies in the same mathematical theory as the one which creates the apparent 

contradictory facts. Let us summarize these facts:  

In a critical reactor  

• The expectation of the number of neutrons is constant; 

• The extinction probability equals unity; 

• The variance diverges. 

How is this possible at the same time? 

Here we arrived at a very crucial fact in probability theory which is often overlooked in neutron 

noise theory, i.e. the concept of ergodicity and its applicability. Namely, the laws and relationships 

of probability theory are always defined over statistical ensembles, consisting of a large number 

of identical objects and corresponding events. The laws say nothing about the behaviour of the 

individual. However, in practice, we have very seldom an ensemble of a large number of identical 

objects. We do not have thousands of identical reactors to make an experiment; we have only one 

reactor and would like to extract information on its random behaviour based on this only reactor. 

Thus, instead of investigating a thousand of identical reactors, we observe our reactor a thousand 

different times, in the hope that we obtain the same information.  

This is the concept of ergodicity, which means that ensemble averages can be replaced by time 

averages. And the concept sounds plausible. For instance, if we want to investigate if a coin is fair, 

i.e. whether the probability of heads and tails is equal, we can either toss a thousand identical coins, 

and count the number of coins with heads and tails, or toss the same coin a thousand times, and 

count the number of heads and tails. There does not seem to be any difference in the two methods, 

except that the latter is much easier, because it requires only one coin.  

Indeed, in this case there is no difference in the result; and the reason is that the process 

described above is ergodic. In the experiment of tossing the coins and counting the heads and tails, 

there is no difference between the ensemble average and the time average (average over the 

number of tossing the same coin).  

One would be tempted to think that all physically realistic processes are ergodic, and indeed a 

great many physical processes are ergodic. But it might come as a surprise how many are not; and 

in particular how a small change in the definition of a process leads to violating ergodicity. Take 

for instance coin tossing again. But instead of counting the number of heads and tails, we now 

count the difference between heads and tails, as a function of the number of the tosses. Heads 

count as +1, and tails as -1, and if there are more tails than heads, the value of the process is 

negative. This is then a discrete random process, equivalent to a one-dimensional random walk 

with equal probability of stepping to the left and to the right.  

It is easy to prove that this process is not ergodic. A rigorous mathematical proof is not given 

here, it can easily be found in the literature. One indication that this process is not ergodic is that 

only stationary processes, whose statistical properties are invariant to a time shift, can be ergodic. 

For such processes both the mean value and the variance must be constant. But we already 

mentioned that for a random walk, the variance grows linearly with the number of steps. The 

constant mean (expectation), together with the diverging variance, is possible through the fact that 

if we consider a large number of random walks, half of them will diverge to plus infinity, the other 

half to minus infinity. This gives a mean value of zero. But this requires an ensemble average, i.e. 

we never get this result if we continue to follow one and the same process. To get the correct result, 

we must re-start the system.  
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One can experience the corollaries of these facts in everyday life. For instance this is the reason 

why a number of ball games, where the difference of the number of scores decides who wins, such 

as tennis, table tennis, volleyball etc. are played in sets. In tennis, a tournament match goes until 

one player wins three sets, usually consisting of 6 games won (except in a tie break), instead of 

one single match consisting of 18 games won. This latter would not be fair. One has to break the 

“random walk” into pieces, i.e. re-starting the process, to get some ensemble average. One actually 

made a change about 20 years ago in the rules of table tennis, shifting from 3 sets of 21 points to 

4 sets of 11 points, which gives a better ensemble average. The non-ergodicity is part of the reason 

why a player, winning one set quite comfortably, can lose the second set with equally as large 

margins.  

Now getting back to our critical reactor, the explanation of the three “contradicting” properties 

above is based on the fact that due to the non-ergodicity of the neutron multiplication in a critical 

system, it has to be interpreted in terms of ensemble averages, and not time averages, hence they 

only describe the behaviour of a large number of reactors. It is not the same reactor in which the 

neutron population will both die out, will remain constant, and diverge at the same time. Rather, 

if we have a large number of critical reactors, in most of them the process will die out, whereas in 

a small fraction of the reactors the number of the neutrons will reach a very high value. To get the 

extinction probability unity, have a constant expectation, and a diverging variance, we will have 

to take the limit of infinitely many reactors. Then, the fraction of the reactors in which the neutron 

population does not die out must go to zero, and in these reactors the neutron population must 

diverge; in the rest, i.e. in almost all reactors, the population will die out. It is easy to confirm that 

with such a procedure, all three “contradictory” properties can be fulfilled. 

The above shows that the expectation is a value which will never be realised; the neutron 

number dies out in almost every system, and it will diverge in a zero set of all reactors. This also 

means that the fraction of the reactors in which the flux will diverge is negligible; if we select a 

reactor at random, it is almost sure that it is not the one which will diverge. In a loose comparison, 

one could say that the chance that “our” reactor would explode by random fluctuations is 

comparable with the probability that a person would fall out from an aeroplane by the quantum 

mechanical tunnel effect. The main point being that the probability is not zero, but sufficiently low 

that we do not worry about it. According to the above, we should not worry about divergence at 

critical; we should worry about extinction, since in almost all critical reactors the flux should die 

out. It is more to these cases that the effects named in Ref. [9], i.e. the control system, the fact that 

the reactor is slightly subcritical in the presence of extraneous neutrons etc. have to be counted on.  

We close this subject with two quotes. The first concerns the answer to the problem statement 

of Watson, described in the foregoing, i.e. the statistical behaviour of an ensemble of N family 

trees. The answer, for the supercritical case (𝜈 ≡ 𝑚 > 1, and hence 𝑞 < 1) is given in a vivid 

description by Kendall [6] which, although mathematically correct, would find some difficulties 

to be published in this form today if we read the sentence in italics:   

 “What this tells us is that if a large number N of males all having different surnames colonise 

a district, and if (females being available as and when required) they each propagate with a finite 

average replacement rate m > 1 (with ∑ 𝑘2 𝑝𝑘 < ∞ ), then after a long time has elapsed about qN 

of the surnames will have disappeared, while the remainder (1 − 𝑞) 𝑁 will persist forever”. 

The second quote reminds to the difference between the statistical behaviour of an ensemble 

and that of an individual member of the ensemble, especially for non-ergodic processes. This quote 

is also due to Kendall, but the present author found it in a fascinating book with the title “Modern 

Mathematics for the Engineer”, published in 1961 [11]. It will not go unnoticed that what was 

“modern” in 1961 may not sound very modern today, at least regarding computer algorithms, yet 

I would recommend to each engineering student to have a look at the book, because it really 
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conforms to the citation, attributed to the famous Hungarian-born mathematician John von 

Neumann, claiming that “The purpose of computation is insight, not numbers”. The section from 

the book, citing Kendall’s example, is reproduced here with the permission of McGraw-Hill 

Educational:  

6. 13 The Example of D. G. Kendall's Taxicab Stand1 

    At a perfectly balanced taxicab stand, either customers wait for taxis or taxis wait for customers. 

Customers and taxis arrive with equal frequencies. If customers are counted + and taxis -, the 

queue length may be any integer 0, ±1, ±2, … From a queue of length k, the next change leads 

with equal probabilities to k + 1 or k - 1. Thus the successive changes are represented by a 

symmetric random walk. The expected queue length is 0, but it is easily seen that at each individual 

stand the queue length is bound to grow to +∞ or -∞. The zero expectation says nothing about the 

fluctuations at an individual stand; it assures us merely that, in a large ensemble, for any stand with 

thousands of taxis waiting in despair for customers there is somewhere a stand with equally many 

customers waiting vainly for a taxi. 

    It should be borne in mind that in building taxi stands, elevators, etc., we are interested in the 

fluctuations in time at one particular counter, not in large ensembles balanced in the manner 

described. Statistical equilibrium is good where it is really meaningful – e.g., in an ensemble of 

many telephone trunk lines. But little satisfaction can be derived from a judicial statistical 

equilibrium where for each innocently condemned person we find a felon running free. 

1. Kendall, D. G., Some Problems in the Theory of Queues, J. Roy. Statist. Soc., 
ser. B, vol. 13, pp. 151-185, 1951. 

A remark on transport in stochastic media 

Kendall’s taxi stand example lends a wonderful illustration and support to the scepticism and 

reservation of this author concerning the treatment of neutron transport in stochastic media. A 

stochastic medium is one whose composition (i.e. space-dependence of the cross sections) cannot 

be described with a deterministic function, rather only through probability distributions or density 

functions. One practical example of such a medium is the core of a pebble bed reactor, in which 

neither the exact position of the pebbles in the core during operation, nor the position of the 

uranium particles inside the pebbles are known. Another example is neutron transport in geological 

formations, or especially in corium after a core meltdown, where neither the geometry, nor the 

composition is known.  

Mathematically, this is a rather fascinating and challenging area. Not surprisingly, it drew a lot 

of interest among transport theoreticians. There exists a vast literature of journal publications, and 

an excellent inventory of the methods and results is found in the book of Pomraning [12]. Many 

ANS conferences have sessions for “stochastic transport”, which also includes transport in 

stochastic media.  

My problem with this topic is not the academic quality of the work, which is undoubtedly of 

high standard. Rather, the lack of relevance of the results to any practical situation. Assume for 

instance, that for a given probability distribution of the random medium, one can show that the 

expectation of the reactivity for such systems is zero, so that the reactor is “critical on the average”. 

In the parlance of Kendall’s taxi stand problem, this merely tells us that in a large ensemble of 

such cores, for a subset of deeply subcritical cores there will be somewhere an equally sized 

collection of cores that are prompt supercritical. It does not say anything about our reactor, only 

about the statistical average over a large number of reactors with an identical probability 

distribution of their core material. This is hardly useful information for a given selected reactor.  
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The results could be useful if one could do something similar as in the case of stationary ergodic 

time-dependent process, where one can replace the ensemble average with time average. However, 

the process here is not time-, but space-dependent (transport in stochastic media is only treated in 

static problems). Hence, such a step would require replacing ensemble averages with spatial 

averages. This would require that the system is ergodic in space. But this would only be possible 

in infinite media (ergodicity requires stationarity), which is irrelevant for practical applications.  

The advantage of time-dependent processes (i.e. where the statistics lies in the time evolution 

of sequence of events), is that time flows from minus infinity to plus infinity. Even in the case 

when the process is not ergodic, we can estimate ensemble averages by re-starting the process (or 

its observation, i.e. the measurement). This way one avoids the need of having a large number of 

identically distributed systems, and useful statistical information can be obtained by observing one 

and the same system repeatedly. This is the case with the non-ergodic tennis and table tennis 

games, where the process is restarted after each set. The aggregate of the results of several sets 

gives an estimate of the ensemble average, without the need of observing a large number of 

identically skilful players competing simultaneously. Similarly, in the Feynman-alpha or variance 

to mean method (see the next section), the average and the variance of the number of counts in a 

given time period is estimated by making several measurements with the same time length. 

However, there is no such possibility with processes varying randomly in space. Therefore, the 

results of the corresponding theories, however beautiful and intellectually pleasing they may be, 

give just as irrelevant information on a given selected reactor core as the expected queue length at 

a taxi stand.  

The utilisation of neutron fluctuations in reactors 

How, then, can one utilise the stochastic nature of the neutron population in nuclear engineering? 

From the reasoning so far, we might conclude that 1) the neutron fluctuations in a reactor (or any 

system containing fissile material) carry useful, non-trivial information on the system, and 2) we 

need to be careful how we apply our methods, when we only have access to measurement data 

from one reactor, and not from an ensemble of identical reactors.  

One example where the random character of neutron transport and multiplication is utilised is 

the Monte Carlo method. Traditionally, this method was invented as a numerical tool to calculate 

expectations (mean values) of the neutron population, i.e. to obtain a solution of the deterministic 

neutron transport equation. In the method the fate of a large number of neutrons is followed up, by 

simulating the possible events (place of next collision, type of reaction, number of secondary 

neutrons etc.), according to the known probability laws, determined by the material and 

geometrical properties of the medium, i.e. the reactor core. Ensemble averages are calculated by 

arranging the simulations into batches, where in each batch the simulations are re-started and 

repeated a number of times. The advantage of the Monte-Carlo method is that it is very versatile 

and effective to treat realistic, inhomogeneous systems with complicated geometries, by keeping 

all variables (space, angle, energy), without making approximations.  

However, the Monte-Carlo method is not the truly characteristic utilization of the neutron 

fluctuations in the spirit described in the previous sections; it is mentioned here only as an 

illustration of the fact that often, even if only average (“deterministic”) quantities are sought, it 

often gives advantages to utilize the fact that the underlying process is random. But the Monte-

Carlo method does not utilize the information contained in the higher moments of the neutron 

distribution. The archetype of the applications which does utilize this information is the 

determination of the subcritical reactivity 𝜌 < 0 of a reactor, in which a stationary neutron 

population is maintained by an extraneous neutron source. Since in a subcritical system, there is a 

relationship between the flux level and the subcritical reactivity, one could think that the reactivity 

𝜌 can be determined from the measurement of the number of detector counts Z during a time period 
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t. However, for this we should need to know exactly the intensity (strength) S of the extraneous 

source, the detector efficiency 𝜀, and so on, which are usually not known. 

However, since the second moment of a branching process contains independent information 

from that of the first moment, a more efficient way is to use the relative variance, or variance to 

mean, of the detector counts Z as a function of the measurement time t. In a simplified form, 

neglecting delayed neutrons, the variance to mean of the detector counts is given by the formula 

𝜎𝑍
2(𝑡)

𝑍(𝑡)
= 1 + 𝑌(𝑡) ≡ 1 + 𝜀 𝐴 (1 −

1−𝑒−𝛼 𝑡

𝛼 𝑡
) ;              𝛼 =

−𝜌

Λ
                              (5) 

Here, A is a known nuclear constant, and Λ is the (known) neutron generation time. One can see 

that the source S exactly vanishes from the expression, since both the variance and the mean are 

linearly proportional to it. The detector efficiency 𝜀 is still present; however, due to the non-linear 

dependence of the relative variance on the measurement time, the parameter 𝛼, which contains the 

sought reactivity 𝜌,  can be determined by curve fitting without the knowledge of 𝜀. It is also seen 

that the relative variance is over-Poisson (larger than unity), and that the sought information is 

contained in the deviation from the Poisson variance.  

The variance to mean method is commonly called the Feynman-alpha method, because it was 

first suggested, based on heuristic derivations, by R. Feynman and colleagues [13]. The full 

formula (containing delayed neutrons) was rigorously derived by L. Pál (1925-2019) in his seminal 

work on the stochastic theory of neutron fluctuations, the so-called Pál-Bell equation [14]. 

Concluding remarks 

It is the hope of the author that this small essay will induce some interest in the young readers 

regarding the subtleties and surprises of random processes in general, and neutron fluctuations in 

particular. This latter area (also called “zero power reactor noise”) is under intensive development 

both in reactor physics and in nuclear safeguards. The purpose of the latter is to detect, identify 

and quantify hidden (e.g. smuggled) fissile materials by non-intrusive methods. This is achieved 

by using auto- and cross moments of neutrons and gamma photons, emitted from the item due to 

spontaneous fission, up to the third or fourth order. Neutron fluctuations in power reactors, induced 

by random technological processes (boiling of the coolant, flow-induced vibrations of control rods 

and fuel assemblies) are used for on-line monitoring of operating power reactors, to detect and 

identify incipient failures at an early stage. A review of both zero power and power reactor noise 

is found in Ref. [15] 
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