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Professor Akio Yamamoto asked me if I could write an article for the Reactor Physics Division of 
AESJ on my experience of doing reactor physics, mainly for the interest of students and young colleagues. 
As I started to write it, I realized that I committed to a very challenging task when I accepted his invitation. 
I decided to choose a few examples to convey my way of learning and doing reactor physics. As the 
targeted readers are mainly students, I must apologize to more senior colleagues if the writing sounds 
trivial or too much preaching. 

1. Two examples in text book reading:

First a very simple example. Resonance shielding is an important subject in reactor physics. To 
explain why a sharply peaked absorption resonance will be less absorptive than a flatter and broader 
resonance, text books typically show mathematically how a dipped flux spectrum results in less 
absorption via the evaluation of the reaction rate integral. I find it simpler to understand the physics 
by thinking of using a roll of toilet paper to wipe out spilled water. It is obvious that pulling out the 
paper from the roll will be much more effective than applying the roll directly.  The outside of the roll 
“shields” the interior of the roll. The same analogy applies to the spatial shielding effect of a lumped 
fuel rod embedded in moderator versus a dispersed mixture of fuel with the moderator. 

Then a little more intriguing example. The core system eigenvalue (k) and the corresponding 
reactivity are fundamental concepts in reactor physics. Text books tell us that a steadily operating 
core is at criticality, k=1. But a core cannot start by itself without some initial “extraneous” neutron 
source (S). A simple point model for neutron balance gives that the neutron flux level is proportional 
to S/(1-k),  with k being the ratio of neutron production to absorption. Then how can the flux for a 
critical core be maintained if the flux would become infinity at criticality? The explanation is that when 
the core is brought close to criticality, the flux level increases rapidly to the targeted level while the 
core still staying just a tiny bit subcritical, never really reaching criticality. Text books always present 
an eigenvalue problem without including the S term in the equations, because when close to criticality 
S is completely negligible compared to the chain reaction neutrons and its presence has nil effect on 
the flux distribution. This simple point model also points to a few interesting things. 

• A core steady state can occur only when it is sub-critical. When the core goes critical or
super critical, it must be in a transient state. Otherwise the flux would become negative.

• If one writes a code to solve the diffusion equation in presence of S, one would run into
trouble if the core is very close to criticality. To avoid this problem, one could estimate
the eigenvalue on flight and switch to the eigenvalue problem when the S term becomes
negligible.

• Although the flux distribution near criticality is given by the fundamental mode
independent of the shape of S, in a deeply subcritical core the flux distribution may be
largely affected by the S distribution. The deviation of the flux distribution from the
fundamental mode distribution indicates the degree of subcriticality.

• Consequently, the effective neutron multiplicative capability of a subcritical core may be
quite different from what the core eigenvalue would suggest. However, one should not
be misled that one might “gain” any reactivity safety margin because of this. The safety
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margin is dictated by how far the core is from criticality, which is independent of S and 
depends solely on the eigenvalue.    

 
2. On nodal methods: 

 
Nodal method has been a dominating tool in core analysis over the past thirty plus years, and 

likely to remain so for at least some years to come. Although I worked on it and used it myself, I have 
always had some reservation about it. The most popular nodal method is the transverse integration 
nodal method because of its simplicity and efficiency. The two pillars of the method are the 
discontinuity factor and the transverse leakage profile, the former of which is semi-empirical while 
the latter is quite ad hoc. Particularly the construction of the transverse leakage profile is quite 
arbitrary, as theoretically there is even no reason why the profile should be continuous across the 
intersect of the four adjacent nodes. The assumption for the justification is that the transverse leakage 
is supposed to be small, thus the result will not be so sensitive to its detailed profile. This may be 
adequate for diffusion calculation. But when using SP3, as to be discussed in the following section 5, 
the correct interface and boundary conditions will contain higher order tangential derivatives, which 
is the transverse leakage on the surface. In such a case if one would still use the ad hoc transverse 
leakage profile, one would run into iteration instability and nonconvergence. A more rigorous solution 
method must be used instead. As for the discontinuity factor, it typically comes from reflective unit 
assembly homogenization, which is the weakest model and the biggest problem in today’s core 
analysis method, and I believe it will eventually be the killer of today’s method. 

 
Another tool typically used together with nodal method is CMFD (coarse mesh finite difference). 

The classical finite difference current between two adjacent nodes is proportional to the flux 
difference 𝜙𝐿 −𝜙𝑅. CMFD makes a simple revision to it by adding another term proportional to the 
sum 𝜙𝐿 + 𝜙𝑅. The coefficient of the difference term is theoretically well known, while the coefficient 
of the sum term is empirically determined by brute force matching the CMFD neutron current to the 
current from the higher level nodal method calculation. Although with no theoretical justification, this 
recipe works because of having one additional free parameter to play with. I did not feel comfortable 
about it and hesitated to use it until I could understand it. I noticed that this recipe simply means a 
general linear combination of the two fluxes, i.e. 𝐷𝐿𝜙𝐿 − 𝐷𝑅𝜙𝑅 , and this form can be rigorously 
derived in the 1D case with both DL and DR analytically determined. The argument goes as follows. In 
1D case, the analytic flux solution in each of the two adjacent nodes has two free parameters. The 
four free parameters in total for the two nodes are reduced to two by imposing the flux and current 
continuity condition on the interface. Hence there is only one free parameter per node, which can be 
chosen as the node average flux. Therefore, it must be possible to analytically express the interface 
current in terms of the two fluxes only.  Pursuing along this line I derived the Analytic CMFD (ACMFD) 
equations for the diffusion case in both Cartesian and hexagonal geometry. (I also derived the ACMFD 
coefficients for the transport case, although I never had a chance to implement it.) 

 
A popular use of CMFD in nodal method is the so called two nodes model, where the higher level 

nodal calculation is done only for two adjacent nodes to determine the CMFD coefficients. The full 
core calculation is then done only with CMFD, which in turn provides the boundary value of the two 
nodes problem. Personally, I think relying only on the (empirical) CMFD for the whole core calculation 
is risky and I have a concern that the iteration may not be robust for all engineering problems. I prefer 
to use CMFD/ACMFD purely as an acceleration tool such that thru the iteration process both the lower 
level CMFD and the higher level nodal method calculation are done for the whole core problem. In 

炉物理の研究　第71号　（2019年2月）



case the acceleration piece would cause any problem, the design code could automatically turn it off 
to assure convergence. 

 
3. On conformal mapping: 

 
By late 1980’s the transverse integration nodal method had become the mainstream solver 

because of its simplicity and efficiency in engineering applications. When people tried to apply the 
method to hexagonal geometry, they ran into the difficulty of how to handle the resulting severe 
singularity at the vertices of the hexagon. This problem caught my interest. I recalled what I read in 
my school days that in classical electrostatics people used in early days conformal mapping to do the 
design of electric capacitor of different shapes because the Laplacian operator ∇2 in the electrostatic 
equations is invariant under conformal mapping. Since diffusion equation has the same operator, we 
should be able to use conformal mapping to map a hexagon to a rectangle to then apply the transverse 
integration method. This should alleviate the singularity problem.  

 
Since I did not expect to have the opportunity to work on this “academic” problem in our 

company, I wrote a Letter to the Editor of Nuclear Science and Engineering to publicize this idea, 
hoping that someone would pick it up.  But nobody did, and I realized that I had to do more to save 
this idea. I went to the company library to find a 1952 book “Dictionary of Conformal Representation” 
and borrowed from a colleague a floppy disc of Fortran II to work out at my home the numerical 
calculation of the mapping function. To be practical for implementation, the next step was to 
approximate the numerical results with analytic functions in a closed form. At this point a manager 
told my boss not to allow me wasting my time on academic work. Then an opportunity came just in 
time for me to make the work into a university cooperation project. To figure out the approximation 
function, I used what I learned in school about complex variable function that the only function being 
analytic everywhere (including at infinity) is a constant function. All other functions must have 
singularities. Thus, a very powerful and efficient way of approximating a function is to locate and best 
approximate its singularities. 

 
Then the East European countries opened, and the company got interested in the refueling 

business of VVER reactors. Using the conformal mapping method, we could much more easily adapt 
the existing core design codes to hexagonal cores. Interestingly the manager who did not like me 
wasting time on academic work was then appointed a manager in the VVER project, and I believe he 
then much appreciated the value of what I persisted on.    

 
4. On Stiffness Confinement Method (SCM) in space-time kinetics: 

 
Stiffness in kinetics is caused by the prompt neutron lifetime being orders of magnitude shorter 

than the delayed neutron lifetime such that the time discretization has to take very small time steps 
controlled by the prompt neutron lifetime. The idea of SCM was inspired by the observation that the 
stiffness effect results in a prompt jump rise of the prompt neutron population while does not lead to 
any irregular behavior in the precursor response. This is because the precursor population is much 
larger while its population change is much smaller compared to the prompt neutron. By introducing 
a dynamic frequency, the stiffness can be effectively confined only to the prompt neutron equation 
which can be analytically solved after the stiffness absent precursor equation is solved. The idea was 
first demonstrated and confirmed numerically with point kinetics.  
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When generalized to space time kinetics, the dynamic frequency is split into a shape term plus an 
amplitude term. The shape frequency is a function of both space and time, while the amplitude 
frequency is a function of time only. The former is obtained from the prompt neutron shape change 
while the latter from the prompt neutron total population change. The prompt neutron kinetic 
equation is converted to an equivalent static eigenvalue equation, where the dynamic frequencies 
divided by neutron velocity are treated as artificial macroscopic cross-sections. If the eigenvalue is not 
equal to unity, then an adjustment on the amplitude frequency is made, according to the resulting 
point kinetic equation. This process is done iteratively until convergence. The flux distribution is then 
updated in both shape and amplitude using the corresponding dynamic frequencies. This method 
allows the use of much larger time discretization steps while still giving accurate results. But unlike 
other methods, when using SCM one needs to be cautious about using small time steps, which may 
cause instability. The convergence criteria in the SCM eigenvalue problem calculation must be 
compatible with the actual change of the eigenvalue and eigen function between the two ends of the 
time step. If the convergence residual is not negligible compared to the actual change in the time step, 
then the time step should be enlarged.  

 
The above work was related to thesis research of my students. At the time our company did not 

find any market incentive to convert the 3D kinetics code into a commercial product, because safety 
analysis based on 3D kinetics was considered unnecessary. The code was put on shelf several years 
without transient thermo-hydraulics added to it. It was unplanned and totally unexpected that its first 
engineering application turned out to be the simulation of DRWM (see next section), where no 
thermo-hydraulics feedback is needed because the low power physics test is essentially done at zero 
power. Sometimes one does not know what a research project would eventually lead to. 

 
5. On Dynamic Rod Worth Measurement (DRWM): 

 
The problem of DRWM development is how to use a point-model based reactivity meter to 

analyze data from a 3D transient process. The key is of course how to account for the spatial effects.  
A quick physics analysis concludes that there are two spatial effects, the static spatial effect and the 
dynamic spatial effect. Consider a “Gedanken” experiment on a symmetric core with one control rod 
completely inserted and its symmetric partner completely withdrawn. If we swap the positions of the 
two identical rods, there should be no  reactivity change of the core, yet the excore reactivity meter 
will record flux change and indicate positive or negative reactivity change pending on where the meter 
is located. This is a static spatial effect, due to core configuration change per se. The dynamic spatial 
effect arises because the delayed neutron distribution change trails behind that of prompt neutron. 
Simulation calculation can predetermine the proper signal correction factors due to these two effects. 
But then there is the subtle question whether the use of these correction factors would “mask” the 
measurement data such that the measurement result would always agree better with the core design 
prediction. A qualitative physics analysis shows that this correlation is generally negative, which tends 
to enlarge the discrepancy between the prediction and measurement. This anti-masking feature will  
give more conservative results, which is acceptable from the safety point of view. A large amount of 
simulation calculation was done to confirm the conclusion of this qualitative analysis. 

 
When we got the first DRWM testing data from a core startup physics measurement, the 

discrepancy between the design prediction and measurement of rod worth was excessively large. The 
management decided to abandon the development project. But I noticed that the problem came from 
the heavy rods, one set of which was unusually heavy with 1800pcm rod worth. A simple point kinetics 
model indicates that the rod worth would be roughly proportional to the logarithm of the ratio of the 
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initial flux to the final flux. When such heavy rods were inserted the signal dropped so low that the 
background could severely contaminate the final flux value and thus affect the results significantly. 
Since the background signal should be the same for all the sets of rods, I best estimated a constant 
background to subtract from all the signals. All the discrepancy largely disappeared! The estimated 
background was a fraction of the lowest signal, which was quite reasonable. The project survived, and 
the background compensation has since been a crucial part of DRWM. 

 
6. On the Generalized SPN theory (GSPN): 

 
Despite its simplicity and practical usefulness, I was always a little skeptical about SPN because of 

its lack of a theoretical foundation. Although I never used SP3 myself I started to think about it more 
seriously when my student needed to calculate the SP3 discontinuity factor for cell homogenization. 
To properly define the discontinuity factor, one needs to compare the reference transport solution to 
the SP3 solution. But there is no way of deducing the reference value of the SP3 functions from the 
transport solution because we don’t know how to relate the SP3 functions to the transport angular 
flux, thus popping up the question “what is the angular flux representation corresponding to the SP3 
solution?”   

 
As I started to investigate this problem, I soon realized that the rigorous derivation of the SPN 

differential equations for a homogeneous medium has never been a problem, which has been done 
in various ways by people. (To my big surprise, I discovered that the first derivation was as early as 
1944 by Mark and a little later by Davison when they developed the PN theory, although not calling it 
by SPN at the time.) The problem has always been not knowing how to derive the interface and 
boundary conditions (IBC). In practice people have been using the (ad hoc) 1D type IBC on the surface 
value and the normal direction derivative of the SPN solution functions. I then questioned why we can 
easily derive the IBC for PN but not for SPN? Physically the IBC should follow from the continuity 
requirement on the angular flux. In case of PN the angular flux is represented via spherical harmonics 
expansion with the PN functions as the expansion coefficients. In such a case, angular flux continuity 
is the same as the continuity of the PN functions. The derivation of IBC for PN therefore does not need 
the reconstruction of the PN angular flux. For SPN, however, there is no such a simple expansion. 
Therefore, in search for the SPN IBC we must go beyond the domain of the SPN functions to ask what 
is the SPN angular flux representation corresponding to the SPN solution functions? I faced the same 
question again: we don’t understand the physical meaning of SPN unless we know its corresponding 
angular flux representation. 

 
I struggled with the quest for the SPN angular flux representation for a couple of years and it 

eventually leaded me to the development of the GSPN theory, where I had to learn and use the 
mathematical tools of solid harmonics, the Helmholtz decomposition of vector, the Davison lemma 
for solid harmonics, and the generalized Helmholtz decomposition of tensor. (Ironically all these tools 
were used or developed by Davison sixty years ago in his fascinating work of partially successful 
attempt to solve the PN equations analytically.) The GSPN theory transforms and recasts the PN 
equations into N+1 layers, where each layer contains a set of diffusion type differential equations. The 
equations in each layer is decoupled from the other layers. Each layer contributes a piece of the 
angular flux which is explicitly given in terms of the spatial gradients of the layer’s solution functions. 
The complete PN angular flux is the sum of all the pieces contributed by the different layers. Each time 
when a layer is added, the summed angular flux changes such that the derived IBC changes as well. 
Therefore, although the diffusion type differential equations in different layers are decoupled, the IBC 
for the layers are nevertheless coupled depending on how many collected layers one wants to use. 
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The lowest layer in GSPN is identical to the traditional SPN except for a different IBC, which is no longer 
1D type and contains higher order tangential derivatives in addition to normal derivatives. Since 
conventional numerical methods have difficulty of handling the higher order tangential derivatives in 
IBC, a new numerical method is developed to solve the GSPN equations. 

 
Concluding remarks: 
 

Usually the first thing I do when I start to work on a problem is to think about the physics behind so 
that I can properly define the problem from the physics point of view. The crucial step is then to build a 
corresponding physics model, where necessary assumptions (i.e. approximations) are introduced. 
Henceforth it can be converted to a mathematical problem, where I may have to find or learn new 
mathematical tools to solve it. I am not good at reading a lot of equations, where often I quickly get lost. 
If I could first understand what the physics problem is, then I could more patiently focus on reading the 
equations repeatedly to understand it. If I cannot understand something in my own way, I have 
reservation on believing and accepting it. 
 

A professor I most respected in graduate school told us “Physics is a science of approximation, and 
mathematics is a science of exactness. Mathematics is not physics.” When we solve a physics problem, 
we always need to build a model with assumptions. Building the model is doing physics, the science of 
approximation. But following what my professor said, I would like to add “Science of approximation does 
not mean approximate science.” Good physics should avoid ad hoc approximations.  

 
Everyone has his/her own way of working and his/her own taste of appreciation. Undoubtedly my 

experience is very subjective and may not even worth two cents to you. But anyway, I have fulfilled my 
commitment to Prof. Yamamoto.  
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