炉物理の研究

(第21号)
1976年7月

＜ニュートロニックス＞
核データ（JENDLとFP核データについて） 飯島俊吾
核融合炉プランケットの炉物理

＜弥生における医療照射の基礎研究（II）＞ 古橋晃雄
弥生医療用照射研究グループ

＜JPD R - IIの起動試験＞ 内藤敏孝

＜アメリカで学び働くについて＞ 関本博

＜掲示板＞

第8回炉物理夏の学校

＜研究室だより＞

（東北大工）樋山研
（原研）高速炉物理研、TCAグループ、数値解析研
（東京大工）重水臨界実験室
（東工大原研）山室研（武蔵工大原研）
（住友原子力）炉物理グループ（川崎重工）原子力技術部
（名大工）玉川研（京大原子エネルギー研）若林研
（京大工）西原研、兵藤研（九大工）大田研

△第17回炉物理連絡会総会の報告△
△新会員紹介△
△編集後記△

日本原子力学会
炉物理連絡会
核データ（JENDLとFP核データについて）

NAIG
飯島俊吾

1. はじめに

NSEやANS Transaction等を見ると核データについての発表が多々あるようであるが、理論的な評価や、積分実験によるデータテストも可成り出されている。この傾向の理由は幾つか考えられるが、一つは原子炉の安全性や環境への影響の配慮が浸透したことによるものである。もう一つは、炉心、造形等の数値計算法が進歩するにつれて、結局最終的なネットワークとなる核データ、物理特性等の数値の精度の問題がクローズアップされて来ることだろう。例えば大規模高より核設計を考えて見よう。現在の知識でもマージンを充分加えしなくては設計は出来ないし、事故発生時のための工学的模様変形を行うと設計の確実性が確保できるように、マージンを増やせる便が出る。しかし、積分実験ではPu、アクチノイド系元素やAm、Cmの生成、消滅のデータを得ることは難しく、又、FPの蓄積効果のデータを得るのは容易ではない。これらの核データが十分に得られるならば、計算過程、燃料交換過程等における炉内状態の計算はそれほど問題にならない。これに従って設計上、計算手法の新旧を考慮した結果、設計上の便益があるであろう。これら等の核データの精度の問題に絡むが、原子炉設計においてはまだ浸透されているのである。超アクチノイド核の核データは燃料の燃料設計における設計に大きな影響を及ぼすし、これにより燃料価格がリサイクルする環境評価に発展するに違いない。JENDLの生成データは燃料、燃料価格を必要にしている現状で盛んに測定、評価が行われている分野である。FPの崩壊データは燃料設計の基礎データを必要とするこの数年間、集中的に研究され、U-235については既にかなりの精度に収束する計算が見えてきている。高エネルギー設計に適用する上では、マージンがあり過ぎると熱衛生問題も起こる可能性がある。これにU-238のFP崩壊データも必要に思う研究が続々とされていないかと思われる。核融合炉設計上での核データはまだこれからの方々か、今後はその核データをもとに考えられる以前から詰めている。

さて、この稿ではJENDLとFP核データについての状況を客観的に述べたいと思う。従って読者は可成り深くは理論的、評価のことを限られる。最近、国内でも東北、東京、東京大、京大等で測定活動が盛んであるようであり、私達もFP核データ評価に東工大、京大がC4-133の最新データを利用させて頂いている。今後は測定値と評価値の連携の意義を是非持てるようなになる事を望んでいる。
2. JENDL

JENDLとはJapanese Evaluated Nuclear Data Libraryのことであり、関西国際等に
応じてENDF/B, UKNLD, KEDAK等の評価核データファイルが作られている。
ENDF/Bはその初期の頃は国内的研究者、技術者達から“全体主義的”など不評があっ
たが、照射用高エネルギーFFTFの設計に取り組むABBN等の研究者が使っているとは何事だっ
たがAECが激励し、USの威信において、微視データの測定と評価に基づくENDF/Bの
作成と国内統一化に踏み切ったと聞いている。

他方、积分実験データを用いて核データを並に調整する“adjustment”の手法があり、フ
ランス、UK等はこの手法を積極的に採用している。日本では原研ら黒井、三谷さん達
のDOYシステムとこれによるAGLIBライブラリーが世界でも一級のもとであろう。

Kラインのattentionを核と微視測定データの立場とは長年対立し、また、特に
微視側の皆さんadjustmentを持つが、JENDLは現在の所、調教のめる微視側であり、
JAERI-FAST-2はadjustment側と云えよう。最近東工大からBNLへ移った高橋博
さんの意見によると、この対立は単一のcross section中心でも常に意識され、それが又
良いくないということである。同じcross section中心のPearlsteinは、微視データと積
分データは同に優劣は無い、あるいは、良いデータが悪いデータから選されるわけであ
らないと言っている。

JENDLの計画で言うまでもなく、1970年頃である。ENDF/Bに劣らな
いもの、(GNPに2位の面目を示す)独自に作らなければならないという民族主義的
な情熱に基づいている。勿論、核データを核は国際協力が必要であるが、核協力は
非核相互のものであり、相手と与え合うものというのが独自にフィルJENDLを作
る願いでもある。今年4月にJENDL-1の幾何が完了した。原研核データ室を中心に
そして多数のシンガメンバーが熱心に参加した。これに収められているのは重核種の
中性子断面積であり、全体として、高エネルギーへの適用を主目的としている。内房の約
70%が国際評価データである。

JENDL-1は積分実験と照合させてどの位置であるか、そのテストを現在ワーキンググループで
準備している。やつはJENDL-1から70の積分数を作り二次元球面モデルで多数の高
速踏面集は実験と解析するものであるが、原研FCA炉心を大量に含めることを予定して
いる。核側測定としては、自然増幅率、スペクトル・インデックス、サンダル反応度、Pu同位
元反応度を含んでいる。このテストの結果、JENDL-1の一部を加え
し、テストを再度繰返して来年春にJENDL公開を目指している。将来はテスト
の範囲をより学的な高速踏面実験や、逆解析、還元実験、中性子ソブ、核実験と、Dati-
metry等に広げる夢を持っている。

積分テストと並行して、原子炉計算に適用するという一つの大切な問題は、U,Pu等の
同位元素の核データが積分断面積と相互のconsistencyである。又、これらの測定は
B-10, Li-6, Au, In, U-235等の標準断面積を基準として行われることが多くて、こ
れらをふくめたconsistent evaluationが大切である。これは従来野目的仕事で
あり、方法論を定めていないものであるが、早く始める必要を織りなす。

軽い、JENDL-1にadjustment手法を適用したらどうなるのか興味がある。黒井さん企の方¥システムでadjustしてみると、JENDLにとっても大変参考になることになりそうだ。

3. FP中性子断面積
ここでは高温度炉の計算に必要なFPを対象とする。1964年発表版のABBN群数数U-235、Pu-239のlumped FP群数数が掲げられている。これは中性子束、照射時間、温度などの設定のデータとしてを考えられており、特に、核分裂数に正確に比例してFPが蓄積するという"non-saturation"の扱いになっている。Bondarenko未を付ける群数数の導出について何を述べておりないのか。現在のところ、定常的における定常的のも実に良くポイントをかえた優れたものと云える。

私達は高温度炉FP群データの問題を1969年に採り上げた。原研の解説、とくにを使った研究データを重ねて考え、我々がやるというので奮起して期待を寄せる。もっともその後、我々は少し寒しくすぎ、進捗が余りなかったのに反りも若干あるかいったようである。しかし、この時期に、光学の傾向を原研のカウンセラと中川、NAIG川名、村田さん等と会って決定にこだわめ、これかそれか、強力な威容を示した。このボテンシャルパラメータは現在、フランス、オランダでも使われ始めている。

FP核データの評価を行ううえの問題は、核種数が少ないことと測定データが少ないことである。核種数を制限するために次のような方法をとった。

(i) ベータ崩壊チェーンを考慮。 (ii) 半減期が10日以上の核種を考慮。

(iii) Cumulative yield が1%以上のものも考慮。
これにより、系統的な考察のために若干のnon-FPデータを与えると約90核種となる。これより、高温度炉のFPによる全崩壊、散乱反応が95%以上を占めると考えられる。

核反応の重要性は捕獲反応が一つで、特に100eV〜500keVのσ(n,γ)線の核反応が主要な役割を果たす。現在、lumped FPのσ(n,γ)評価値の誤差は一例が20%（1σ）と見なされているが、この誤差は高エネルギー核反応に対して1%/k/kの予測精度をもと、ナトリウムプルト反応に対する20〜30%の予測誤差を生じると考えられる。この予測誤差はFP核種数の不確定を示していることが重大であり、我々がやるときにはこれ以下に補うことを目指すべきである。

非弾性散乱と弾性断面積の精度は互いに高いが、下仮説がなければ実用面から云えば極度に高い。理由は、FP反応制限をABBNのFPデータを使って現実問題で解き、非弾性散乱と弾性断面積（深さ）は各々約10%の寄与をし、反応制限に対して互いに互いに互いに解消し合うからである。しかし、非弾性散乱断面積の評価は核種数が重要な条件である。核種数がSM-15よりの場合、我々の評価とBengtの評価とは5keV〜1MeVの間に30%乃至フィクター3程である。未解決がreasonableと考えている。又、サンプルFP反応制限測定値を使ってFPのデータを使って行う際には、炉中心サンプル
ならびに途絶の有無と、応答を含まないので、非弾性散乱の影響が大きく表面化してくることになる。 もし、非弾性散乱の計算には原子核のレベルスキームがあるべきであるが、F.P.核種では 10 本以上のレベルが設定されていることから、特別な数体の、レベルスキームの確認が大切である。 レベルスキームの評価は大変要人で、地球的な仕事である。 熊本大学の木村、農研室の松本など、NAIの村田さん等々の論文を参考にしており、世界的にも類似の無い、良い編集を行なっている。もっととも 90 核種というと、宇宙、月の言葉を指しているようである。

F.P.核種の評価を含め、CASHER のコードを使って核種組み合わせ計算を行ない、測定値がある時は計算値と測定値を規格化するものであるが、測定値が少ないため、核種間のパラメータ systematics を最大限に利用する方法を採っている。 特に、複合核の原子レベル同様 Dobs の値の不確定が大きくなる、エネルギーの範囲で、容易に数 10 % の影響を与える。このような F.P.核データ評価の最と頭並べている。 又、大型高エネルギー 1 keV 以上、1 keV 以下は可成り重要なエネルギー領域であり、共鳴パラメータの測定値、共振の結果の精度は大きく影響する。 しかしここは現状、無いもふねにとることを望むことを得ることにとらえている。

こうして、昨年 3 月に F.P.28 核種の評価を終了、今冬に残りの 60 核種の評価作業にいそしむ。 28 核種の結果は JENDL-1 に収納してあり、原子炉 operated と核種、長谷川、西村らさんの、オランダの Petten 研究所の STEK 炉の F.P. 反応力実験結果を解析した。 STEK 炉の結果の version について、下表に STEK-1000 炉での結果を ENDF/B-V で比較して掲げる。 公平に見て我々の評価と差はないと判断している。

<table>
<thead>
<tr>
<th>Isotope</th>
<th>JENDL-1</th>
<th>ENDF/B-V</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-93</td>
<td>0.93</td>
<td>0.62</td>
<td>Abnormal core dependence</td>
</tr>
<tr>
<td>Mo-95</td>
<td>0.98</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Mo-97</td>
<td>1.07</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Tc-99</td>
<td>0.66</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Ru-101</td>
<td>0.85</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Ru-102</td>
<td>2.2</td>
<td>2.0</td>
<td>Small reactivity</td>
</tr>
<tr>
<td>Ru-104</td>
<td>2.5</td>
<td>2.35</td>
<td>Small reactivity</td>
</tr>
<tr>
<td>Rh-103</td>
<td>0.88</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Pd-105</td>
<td>0.72</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Pd-107</td>
<td>0.67</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Ag-109</td>
<td>0.82</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>I-129</td>
<td>2.7</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The C/E Values for F.P. Sample Reactivities in STEK-1000 Reactor

<table>
<thead>
<tr>
<th>Isotope</th>
<th>JENDL-1</th>
<th>ENDF/B-V</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-133</td>
<td>0.86</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Cs-135</td>
<td>0.4</td>
<td></td>
<td>Abnormal core dep.</td>
</tr>
<tr>
<td>Nd-143</td>
<td>1.22</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>Nd-144</td>
<td>3.0</td>
<td>3.7</td>
<td>Small reactivity</td>
</tr>
<tr>
<td>Nd-145</td>
<td>0.76</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Pm-147</td>
<td>0.74</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Sm-147</td>
<td>0.94</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Sm-149</td>
<td>0.78</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Sm-151</td>
<td>0.49</td>
<td>0.50</td>
<td>Large incl. scattering</td>
</tr>
<tr>
<td>Eu-153</td>
<td>0.87</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>0.94</td>
<td></td>
<td>JAERI-FAST-2</td>
</tr>
<tr>
<td>B-10</td>
<td>0.92</td>
<td></td>
<td>JAERI-FAST-2</td>
</tr>
</tbody>
</table>
核融合炉フランケットの炉物理

原 研 関 泰

核融合炉としては様々な方式が考えられているが、最も期待が報われているもの
は、D-T反応を利用するトカラ型トーラス炉である。そこで本文においては、トカラ
型核融合炉におけるフランケット核設計とその基礎となるフランケット炉物理の概略と
問題点を紹介する。D-T炉である限り炉壁によるフランケット核の役割はほぼ同じ
であるのでここに述べることは一般的である。

Fig.1に原研で設計を進めている核融合試験炉の概念図を示す。プラズマの周囲はネオ
ビウムフランケット、遮蔽層及び取り巻き、さらにその外側に超電導のトロイダル磁場コイル
とコロイダル磁場コイルが配置されている。この図では真空室に遮蔽層の位置があり、こ
の遮蔽層にプラズマ形決定用の中性子入射装置、機械式リミッター乾燥装置、真空ボンプ
などが設けられている。

1.フランケット核設計の役割

D-T核融合反応に伴って放出される14MeV中性子は、核融合反応エネルギーの約２割さ

Fig.1 Overview of the JAERI Experimental Fusion Reactor (JXFR)
ブラシートに発生し、さらに発熱反応によりプラシート中の発熱量を増加させる役割を果たす。また中性子は、何らかの形でブラシート中に形成されるトリチウムとH(α,n)はおおよそHM(α,α)反応を起こすことにより天然に存在しないトリチウム(T)を、ブラシート中に製造される以上に生産する。その反面、中性子は炉の構成材材に放射線促進を生じさせるか、その捕獲的、電気的性質を変化させる。ネックの耐熱炉の一部の短絡を試みた必要があると検討される。また中性子により生される凝集放射能は、炉の停止時の換算時においても流動に相当する程度の発熱を生じる。したがって中性子に起因する凝集放射能は機械式に制御すべき起電流マグネット（SCM）中の熱源となる凝集電流を増大させる。このような核融合炉の設計に重大な影響を及ぼすD-T中性子とこれに起因する凝集放射能の各コンポーネント中での拡散とその作用を明らかにすることが、ブラシト核設計の役割である。そしてこの核設計の基礎となるもので、ブラシト核物理である。

2. ブラシト核物理の特徴

ブラシト核物理は14 MeV Neutronicsを解読するように、その源中性子のエネルギーが約14 MeVであることに着目する。トリチウム生産と放射線発熱に最大の寄与を果たすH(α,n)反応、あるいはブラシトの周辺部で核発熱能の主成因となる(α,n)反応などは、低エネルギー領域で1/n核捕獲に相当するため、熱中性子がプラシト中で製造される傾向は大きい。そこで発熱量が14 MeVまでの頃、エネルギー範囲の中性子の密度およびエネルギー分布を特徴的に理解することがブラシト核物理の目的の特徴と言える。

ネックの特徴は、ブラシート状のプラシトがD-T中性子の発生源であることである。プラシト中のD-T反応は分布もまだD-T中性子の方向依存性については現在のところはっきりしていないが、それであってもブラシトには、高エネルギーの中性子がプラシトから入射して来たということと、中性子の角度分布および散乱などの反応による2次中性子の異方位性に特に注意して解析を行う必要がある。

ネックの特徴は、核分裂後に軽水の核が核物理的にもたらす影響が大きいことである。ブラシト中の放射線発熱も大気中から流れてくる発熱の割合は大きく、特に冷却水困難と言えられるネック核においては中性子による発熱の数値が大きい場合もある。さらに、SCM中の発熱を大気から流れてくるにもかかわらず。

現在のところどのような材料が核融合炉に使用されるかは最終的な流動的であるが、核分裂後に中性子が核材料に吸収される確率が大きいか、このように核データを正確に十分に理解されない核種を取り扱うこともブラシト核物理では必要となる。
3. フランクネット炉物理の問題点

このように多くの特徴をもつフランクネット炉物理の問題点は、大きくすると(1)核データの不確定さ、(2)計算方法の不確かな、(3)核データと計算方法の検証法の未発表となかされる。

(1) 核データの不確定さ

フランクネット炉物理の最大の問題点は核データの不確定さである。フランクネット核計算において特に重要である8～13 MeV領域の核データは、適当な中性子源が少ないからなる不確かさからがさらに一定値を示すという方法が低い。10 MeV以上にしきい値がある反応の断面積、非弾性散乱、(7.2MeV)反応断面積を含む非弾性中性子のエネルギー、角分布データは、体系中の中性子スプルの計算値を大きく左右するにかかわらず不確定さが大きい。したがって、核データの精度は非常に不十分である。さらには、誘導放射能の計算には核データが必要であるから、この辺りで不確定さが大きくなっていてはならない。

(2) 計算方法の不確かな

フランクネット中の中性子束分布を求めめる問題は外部線源問題であるので、適当な計算コードを利用できる。フランクネット核計算において中性子の方向依存性に特に注意を払う必要があるが、S₃輸送計算コード、モンテカルロ計算コードなど適用されている。現在のところ3次元および2次元S₃輸送計算コードが通用されていているが、トーラス座標を取り扱える計算コード、および複雑な核フランクネット系を精度よく扱える3次元計算コードの開発が望まれる。これらのコードは適当な計算機時間と記憶容量に、ray-effect, mesh 形状と計算上の近似を伴う誤差を十分に小さく、かつ断面積入力として容易で使いやすい形に整備されるべきではない。

また、フランクネット炉物理では対象とする中性子束がホンマ核のエネルギー範囲を含んでいるので、それらの100倍、50倍以上の断面積を用いることが望ましい。対応する断面積を核データファイルより作成する処理コードでは、現在のところ3 nonelastic neutrons の角度分布と取り扱う機会は少ない状態である。

核融合炉材料に関する主な核種において、2次核種の存在を考えたために核反応のルジャンドルの展開を含み、150種中核種の核フランクネット結合断面積をとらえる核融合炉用歯核ライブラリの作成が望まれる。このライブラリには、主な中性子断面積、発熱定数、放射線損傷係数および誘導放射能計算用データが収録されることになる。

(3) フランクネット炉物理実験

核データと計算方法を検証するためのフランクネット炉物理実験は全世界でまだ数多く行われたことなく、これからの課題である。現在はフランクネットのモデルアップ実験を行うことも、測定手法の開発とD-T中性子束がこれに結び付ける放射能のフランクネット材料中の断面積データの精度を重視して実施され、トリチウムなどの核化学的生成、放射線発熱率、中性子束とホンマ核スベクトルなどの測定法の開発がますます必要である。これらの測定法を用いて単純な核系の計算結果をあらえる実験値と1次元
計算法との一致が得られれば、より複雑で現実的なプラウン管連続変形の実際への適用につながることになる。またプラウン管変換の物理実験の精度を上げ、かつ効率的にこれを行うためには、強度からMeV中性子源の向かうか否かである。

プラウン管換算計の課題と展望

横核融合炉は、高エネルギー、加熱、そういえば、冷凍などを必要とするエネルギー（電気エネルギー）がかなり大きくな、パワーパラメータが設定しないため、一発融合法アリのプラウン管中に放射線発熱を Vid へ多くするようにプラウン管を設計する必要がある。炉の出力と温度設計を行うための基礎データとしてプラウン管中の放射線発熱率、分布を精度良く求めなければならない。

トリチウムの増殖材としては、液体の塩酸トリチウム（LiBeF₃） stud6 LiBeF₃) あるいは固体の塩酸トリチウム（Li₂C, LiAlO₂）などが考えられているが、これもぎりぎりで高増殖比を 1.0 以上とすることが可能である。しかしながら構造設計の適用は伴っており多くの構造材料が必要となるため、この点を考慮に入れ、冷却管路の下の付着、インジェクタ孔などのためにプラウン管領の減少を考慮した場合にも十分な増殖が得られれば今後の課題である。

プラウン管に面した中性子の放射線損傷が最も大きい。特に中性子のプラウン管側は中性子のミスマッチ度、電気熱に中性子を含むプラウン管、電気熱を含むプラウン管、プラウン管など、中性子照射で扱われるプラウン管の放射線照射に対する耐性がある。しかし、電気熱材はの機械的性質の劣化の原因は中性子であり、特にヒドラムの生成が問題と考えられる。中性子の寿命とその放射照射は他の電気熱損傷と大きく左左され、中性子による照射損傷を精度良く評価することは極めて重要である。

放射線損傷の SCM の自生低下は一定の条件以上で抑えようとする設計が必要である。現在のところ SCM の構成材の放射線効果と耐放射性材としての鋼の電気抵抗増、電気絶縁材の電気的、機械的性質の劣化などが最も大きいと言われているが、放射線下の放射線損傷データは非現実的である。組み立てられた SCM に対する放射線損傷下の放射線損傷データ、明確な腐食設計の基準を定めるための最終的には必要となる。

構造材などの耐放射性能が問題であるが、次第に明らかになってきた。アルミニ合金、パラジウムを基本構造材に用いて耐放射性能を小さくする試みがなされているが、炉のどの部分で使用するかを決定することが明確になるためには精度が必要な耐放射性能の評価が求められている。

参考文献

「弥生」における医療用照射の基礎研究.（Ⅱ）

東京大学 古橋 昂 他 弥生医療用照射研究グループ

光を「新物理の研究」第17巻（1974年5月）に掲載し、49年1月以降の研究状況について記述したが、52年3月末を含め、この間の研究状況を公的に公示する記録が残っていないことに注意する。51年6月の推移状況を再び「新物理の研究」に掲載する記録に納める決定とする。この間1年間の研究室の一部が未だ存続するようになっている。ビスマス等を加入し、新しい体系を検討することができるようになっただが、「弥生」好心の中性子スペクトルの研究目的としても、未だ存続の条件に近いと考えられる。マンガナー・マングリールなどの不足はすでに報告されている。現在の施設化に従って、所望の状態に近づきつつある。

【49年3月頃ビーガル大照射実験】

実験の最初に記したと同様左右の体系において2.9をした照射を行った。天然照射線を全身線量とするべく減らすよう配慮したのは、49年1月頃をも含めてある。脇内部でCD1以上10%を設定して線量を、ビーガルでQ1=2×10^5、T1=1.75秒により、F=10^5司で、この値に関する推定が見られなかった。尤まりは背中で

【49年5月程後劣化測定実験】

上図と同じしきい値2400W発電器ファンタートを配置して、照射の遮蔽実験を行った。CDは1.2〜1.5cmの厚さにあり、ビーガルは10cm立方の小シファントーム捷は1.6cm³

EUとEUのμ,μC,2であった。ビーガルの左面における、推計値からジリニウムを決定した領域における遠中性子を求めるにあたり、推計値にあてはめられなかった。

この研究の終結にはきわめて長期間を要したが、遠中性子に対する留意

*弥生施設のメンバーとして、大森弘、古橋晃、藤原洋、松山張、岡崎明、村松和、遠藤常、京都彦、平尾裕、瀧野幸、居木棟、石井元、斎藤雅、中島和、松本敏、田村浩の皆様のご協力がある。また動物

21-9
この実験の結果、重コンプレックスの中心部に位置する原子核を10cmの厚さの外層で2000 keVで照射すると、中性子線量に対する重層の効果は大きさいないと、従来の考え方を大きく変更する必要がある。
[50年1月期詳細測定実験]
前回の結果に鑑み、49年10月期の結果に類似する。中性子が必ずしも黑鉄層を通り抜けてしまったとき、放射を示す。大気中で一定の値を示すことができないので、
ファントムの前面（10cm厚）と同程度に遮蔽用鉛を着脱してい
た。遮蔽の厚さの中性子線カタログの値はC60を標準として1200倍、
中性子900個/分、中性子1本では原子力570個/分である。箇所は大
気中で100%の線量率を示す。ファントムを塩水中に設置して
位置にして、深度1.5cmピーマーで値を1.7×10⁻²（Cd-AH，2cm）
にした。10cm厚となり、前頭部の
厚さ（2cm）をさらに増したとき球形の値が非常に悪かった。これに前
頭部の遮蔽を増してい
て、depth 1cm下。ドリルの部着脱の効果は非常に大きいが、
環F.C.
で1MTR以上の中性子線を測定した。計数は1.7×10⁻³（表面2.33cm/hr）に10年を得たが、計数が少
く、精度が低い。

この実験の結果、ピーマーは100%の線量率を示す。ファントムを塩水中に設置して
位置にして、深度1.5cmピーマーで値を1.7×10⁻²（Cd-AH，2cm）
にした。10cm厚となり、前頭部の
厚さ（2cm）をさらに増したとき球形の値が非常に悪かった。これに前
頭部の遮蔽を増してい
て、depth 1cm下。ドリルの部着脱の効果は非常に大きいが、
環F.C.
で1MTR以上の中性子線を測定した。計数は1.7×10⁻³（表面2.33cm/hr）に10年を得たが、計数が少
く、精度が低い。

[50年2月期一次元線量計算]
GECのコードで26図定数を作り、AMISHコードでP-S0計算を行った。A反応堆積
穴のスケットルのうち、中性子を直接水素に射着させると、同じピーマーは深度3.3cm所
に発生する。そこで0.82MTR以上の入射剤カットしてもピーマー位置は変らない。9.8cm以
上をカットしても0.7cm, 33cm以上をカットしても1.7cmと、数値化したスペットが所
下るピーマーを示す。この位置からの入射は無ん
としている。すなわち、ビー
この計測の結果は、中性子線の減速メガンから生じたピーマーも、
計測ピーマーを通じたものである。なお、遺留方

[50年6月期詳細測定実験]
B反応堆積料を黒鉄層で変える。4月期と黒鉄層の位置を変えて
たことにより、大気中で測定を実施したことの効果をみようとし
て大気中で測定し検証を行った。A反応堆積
のスケットルは本報で
そのうちの。ブロック状体積（16.8×15cm）に生じた中性子を生
じ、遮蔽値を発見した。T1（1.3MTR）とT2（0.6MTR）の值を
用い中性子線を測定した。計数は3.7×10⁻²（40±20cm/hr）。表
示される5.0×10⁻²（50cm/hr）を示すが、値は中性子線カ
タンクの値を4.7×10⁻²（Cd-AH）と無に差が無く、水ファントム内
ピーマーは深度2.4cmで4.0×10⁻²である。
測定では $\Phi_m = 8.71 \times 10^5$ (cd×hr×10) である。なお、U は生成カウントと X の積さすが、大幅に測定値とはならなかった。なお、V はもはや5〜6倍もしくは全く増える値を示すべき状態である。E のビームは 8.51×10^5 (cd×hr×10) に下がり、中性子レントゲン――の機器も 1680 mm^2 までに下がり、比較的良い。

この実験の結果、B 反射能に対する中性子束の影響は、期待通りに良好な結果を示した。しかし、中性子束の増えると、反射能が悪くなることが示唆されている。

この結果に対して、中性子幹細胞を用いることも考慮されるべきである。したがって、レントゲンフィールドには、中性子束の増え、B 反射能の発達を考慮する必要がある。これは、反応性の発達を伴う中性子束の増えることに対する対策をとることを意味する。

【51年2月期測定実験】

B 反射能部分に Fe 10 〜 15 cm、その他の C 5 〜 20 cm、およびフィードチャージを用いる。反射能の発達を伴うため、反射能の増えることに対する対策をとることを意味する。

この実験の結果、中性子束の増えると、反射能が悪くなることが示唆されている。中性子ガスの反射能の増えることで、反射能の悪化を避けることができる。

【51年2月期測定実験】

B 反射能部分に Fe 10 〜 15 cm、その他に C 5 〜 20 cm、およびフィードチャージを用いる。反射能の発達を伴うため、反射能の増えることに対する対策をとることを意味する。
子を想定し、C又有との関係を更に重要に考慮するための基礎資料を提供する。従って、B-doseを考慮し、下記の安全基準とすることが必要である。 図表の詳細は次の通りで、計算結果が示されたものである。B-doseの基準値は50 cGy（500 mR）である。更にこれを基にした無痛下で計算してみた。補足の一部を以下に示す。

この算定の基準は、2月期の実験条件と生体内の係数と電子係数が異なるため、更に生体内の電界分布の影響を考慮した上で設計がなされたものである。B-doseの基準は60 cGy（6000 mR）である。
1. JPD-Ⅱ計画の概要

JPD-Ⅱ計画の概要は、発電出力45MWの自然循環沸騰型の電力炉であり、昭和38年8月に臨界実験が開始され、4年半で達成された。この間の規模は約430MWDとあった。JPD-Ⅱ計画とは、このJPD-Ⅰを改変し、冷却方式を強制循環方式にし、出力温度が2倍に上昇させ、試験燃料の照射ベッドに加え、原研に配置されたものである。JPD-Ⅱプログラムは4年6月に進捗され、改修のための計画検討が進められ、4年9月改修工事が実施された。JPD-Ⅱの発電試験はPhase 0～Phase VIIまで計画され、4年2月に燃料装荷が開始された。試験はPhase 0, 1, 2, 3（発電出力50%）までの順に進んだが、4年8月に炉心スケールの漏水事故が発生し、試験が停止された。その後、フックの溶接修復に約3年間を要し、昭和50年6月に試験再開した。現在（昭和50年11月）燃料試験はPhase IVまで終了している。

２. 試験内容の例

２.1 電気出力物理試験

電気出力物理試験（Phase 0 Test）は、常温状態における燃料および吸収材の対数温度と測定し、設定値の妥当性を検討するためのものである。この試験における項目を重要なものとしては下記のものがある。

（1）燃料束間温度の実際の確認
（2）燃料束温度の測定
（3）スタッフ・ロッド・パレーンの測定
（4）燃料棒温度の測定
（5）制御棒ワース・カーブの測定

炉心の対数温度測定は、パレーン中性子法と炉周辺法により行う。この結果は計算に使用した定数および計算手法の検証に役立つ。特に制御棒配置位置に関する実測値は3次元中性子拡散の計算コードの検証に役立つものと考えられる。

２.2 温度上昇過程の試験

温度上昇過程の試験として重要なもののは、減速比温度係数の測定である。減速比温度係数の解析は、常温状態における物理試験の解析と通電温度における物理試験の解析とめて重要である。通電温度の解析結果と減速比温度係数の解析結果が実測値と良い一致を示せば、通電温度における物理試験の解析は次の3点に従うとされる。即ち、減速比温度係数、ドア温度係数および放射散熱効率の解析がある。

JPD-Ⅱのように小さな炉心における温度係数の解析において特に注意を要するのは、制御棒パターンの温度係数への影響を考慮した温度
係数の解析には多くの3次元中性子化学計算が要求される。そのため、現状で水冷核炉の温度係数の解析に関する詳細は報告されていない。解析の過程において、反応度の崩壊と冷却棒による影響にしたがって行われた場合、均一吸収材によって行われた場合および材料パックリングにより行われた場合における解析結果と実測値の関係をFig. 1に示す。

2.3 出力運転時の試験
出力運転時の原子炉の絶対性の解析として重要なものには、炉内出力分布および冷却材流
量配分である。出力分布に関しては商用動力炉での実測値が多く出されているが、ここでは流量配分の測定について述べる。JPDRIIの流量配分は炉内に4体のIF (Instrumented Fuel Assembly) を装荷し、その入口流量をターン式流量計で測定することにより求められた。Fig. 2にJPDRIIの流量配分の計算値と実測値の例を示す。

3. 今後の予定
JPDRIIの出力上昇試験は現在50%出力まで終了しており、今後100%出力までの出力上昇試験が予定されている。また、この後各種の炉心特性の解析が予定され、それを終え
る結果をもとにして種々の運転状態のもとを作り検査の現象の正確な把握のための研究が続けられる予定である。

Fig. 1. Temperature Coefficient at JPDRII

Fig. 2. Coolant flow distribution in JPDRII core at phase III

<table>
<thead>
<tr>
<th>Calculated (HYDRO-ACE)</th>
<th>Measured (IPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.92</td>
<td>10.96</td>
</tr>
<tr>
<td>10.96</td>
<td>10.94</td>
</tr>
<tr>
<td>10.98</td>
<td>10.91</td>
</tr>
<tr>
<td>11.00</td>
<td>10.99</td>
</tr>
</tbody>
</table>
アメリカで学び働くについて

東工大　関本 博

私は丁度博士課程を半年経過させたところでアメリカに渡り、その後大学と会社で合わせて5年半程の生活をおくってきました。その様なことから、何か面白いアメリカでの体験談を書いたのでと聞き述べました。

アメリカの大学や研究所の紹介にいたったことは今のようにも日本から見学者が訪れる訪問者書を書かれたりしていますが、大学の事情等についても色々な研究がなされて立派なレポートも出ているのではないかと思いますので書くのは止めさせていただきます。私の従っておいたゼネラル・アトミック社のことや、そこでやっておりました過熱冷延素の話は、またこれからのことにつきましては日本において使うのに適任の方がおられますので、これらの人が発表されるのを期待して、私は何も書かないことにしました。アメリカでの一時生活、特に人性に関しては、非常に多くの人がありがとうという報酬を受けるが、ここは色々な出版物に面白いかく書かれていることである、大物理専門家の機関紙に載せることがなくして……。この様に考えていきますと書くことがまるで無くなってしまいますが、無理に書くことを考え出しました結果、どうすれば直るか、これに合うか、適当にアメリカの大学に入学でき、更には就職して高い給料をもらい、楽しく好きな研究ができるだろうかと考えておられる人に何か参考になるようなことの幾つかを述べさせていただくことにしました。

留学するにあたって何故自分はその様なことをするのかという目的をはっきりさせておくことは、会社から派遣される様な場合を除いて、重要かもしれません。むこうへ行ってみますと、留学生の多いのに驚かれます。しかし大部分は会社から派遣されてきた様子の人達で、こうした人達の目的は鈍回はっきりしています。個人で来ている人達と話をしてみますと、会社を体験にして来ている様な人は、会社では勉強できないからここに来たといった勉強熱心な人が多い様であり、日本の大学を出てすぐやめて来た様な人達は、日本にいても仕様がないからといった。大学辞退のあった時節にふさわしい解答をしてくれる人が多かった様です（私がアメリカに渡りましたのは1970年です。）。かくいう私もこの様なことでアメリカに渡りたくて、その程違っていたと思います。その様な訳で、日本の大学も治まりだと、学生等の海外旅行者は増えた一方で、自費留学生の数は減ってきたのではないでしょうか。減ってきた理由を更に言いますと、留学してもあまりメリットが無いというものを皆が意識する様になったことです。開国直後や終戦直後の様な、日本の文化はあると国民が思っている時には、留学も非常に大きな意味が
あったのでしょうか。現代の機会に経済大国になっていく、自分達は間違っていないと。
また非常に優秀だと自負する様になってしまいますが、何年も外国で生活してきた様
な人はかえって邪魔で無能な人間になってしまうのだろうと思います。この様な意味から、
留学する前にある程度人生の目標の模様を定め、それに合せて留学の目的をはっきり
させておくことが大切だろうと考えた訳です。もし日本のようなちっぱい国のことは
考えず、世界的な仕事をしてやろうと思っている人なら、なるべく早く、修士1年目にア
メリカに行き、大学卒業後もアメリカにとどまって仕事をさせた方がいいと思います。さ
っと日本でるとよりもずっと早く学位をとることもでき、大きな研究室で残分の仕事がで
きるとも思います。一方でくまで自分の生まれ育った日本で仕事をしたいという人は、博
士小年時に留学された方が日本の様子もわかって行く頃でよいと思います。
いずれの時点で留学するにしても、もっとも事前から顧問を寄せたりし
て、準備を始める必要があります。どの大学もかなり派でしかカタログを発行していて、そ
れを見ると、どの様な授業がおこなわれているのかなど、どの様な手続きで学位をとるの
かといったことを知ることが出来ますし、どれだけ費用がかかりそうかということをわ
かります。これからのものを参考にして大学を選択されるのはよいと思います。この際大学だ
けでなく、まわりの環境や気候風土も調べておくのが肝心です。大学に入るのには通例、
日本の様な入学試験は無く、内申書だけで入学が決定されます。原子核工学科を持ってい
る様な日本の大学の学生たちから、アメリカのどの大学でもすぐに入学を許してくれる
と思います。但し英語の試験を受けなければならない。英語の試験は授業でTOEFLと呼
ばれていますが、英語に達せられていてかなり難しいものです。しかし英会話を学校
で通じ中級に通っていた私はとてもハッとした様子です。それくらい選ばれるかではない
のかかもしれません。
大学に入るのには先にも述べましたが、日本でちゃんとやってくれた人にとっては
ほ、手続きの関連だけで簡単ですが、卒業をとるのにはこれよりは少しだけ難しくなり
ます。しかしこれにしろして、沢山入学してくるアメリカ人はともかく、留学生の過半
数は、生活さえ維持できれば、自分で目的の学位をもらって出て行く様に聞いています。
一番問題なのはお金をどうして得るかということです。これには奨学金（FellowshipあるいはScholarship）、Teaching Assistant（T.A.）、Research Assistant（RA）等が
ありますが、日本の奨学金制度のように似た借金制度もあります。私が留学した頃は、
フルタイムの様なというの留学生の為の奨学金制度は工学系学生に対してはすべて打ち
切りされた様で非常に苦しんでいましたが、今はまた復活した様ですので、調べてみられるとよ
いと思います。但しこの様な留学生向け奨学金は、学位をとれた後アメリカで働いてはいけ
ないといった様な規則が必要なぐらいですから、あらかじめ注意しておおく必要があります。大学からの奨学金は通学制の義務を無く、もらう方としては何れ
程いいものではないのですが、もらえる人数が非常に少ないのが問題です。一般にはこの様な基
金は名を成した卒業生等から出ている場合が多く、歴史の深い原子核工学科の様なところ
ではほとんどのが普通で、工学部とか大学本部からの賞金を使っているのが通例でな
いかと思います。私のおうち鉄に関連する大学では、私のおひとりが、高校時代から3人らしいとしており、いなかった場合です。またこれは、高校時代の教室が普通で、在卒中صارにとって、新しいのは、聴覚を難しいことです。大学は、一帯の教員の役を負担して、うまくそれを教えるのが難しいです。TDAは、教員に他の研究の助手として雇ってもらう制度で、金の出元は会社の初めから政府です。いったん採用されると、そのアプローチが最終に至ってもらえるのが普通で、その間に他の教室にも関連しているでないために、筆者も書き上げるのに適当な仕事ということを考えますと、なかなかいい口はみて分からない様です。奨学金やTDAはその学校での成績が評価の対象となりますので（特に奨学金の場合成績だけで評価される様です。）1年目からもらうというのはまず制度上だめです。RAにつきましては、人生をじっくりとくらべると1年目からもらえるということは可能ではないと思いま。なお、生徒がTDAやRAといった以外の経済にアルバイトをすることは禁止されているので、法律は州によって違うかもしれません。

快適な気候に恵まれ、新しい環境の立派な大学に入学できたら、後はもっとくいつこうけんめい勉強するのが一番です。いい成績をとれば奨学金がもらえるし、オラリ・ソサエティーに加入を許されたりします。この様な意味でないか勉強のしづかいがあります。また他の学生も頑張って勉強していますので、皆が遊んでいる中で勉強すると何か後のためらいを感じるといった様な人は、アメリカに行かれたら、きっと在住に勉強できることと思います。

さてうまく大学もとってまいりますと、社では少しアメリカで働いてみようと思うのが人情です。特に個人留めの場合は、色々な形で資金援助されていますが、やはり日本からのお金で負担が払われていることもあります。帰る前に少し練習いうところ考えるのは、絶対に経済的な思考だと思います。しかし、研究室で就職するのは大変で難しかったです。例えば、ある会社に働きたいと思って問い合わせますと、労働許可証を持っていなければ採用できないという返事が返ってくるでしょう。そこで労働局に行って労働許可証を下さると教えてます。するとアメリカでちゃんとした職業を持っていると労働許可証をあげる訣にはまいりませんという返事が返ってくる訣です。スタインベルクは、最初アメリカの東海岸にはたどり着いたアンテロ・サクロン達が、逆にやってきたアイルランド人やドイツ人達の頃をみて、「もういい、この国は満員なんだノ」と言って、水際から蹴落そうとしたと書いています。21世紀をかかえた今日、アメリカの労働者は同じようにこの国は満員だと言って外国人労働者を練り出している訣です。（偏見の無い就に付け加えておきますと、日本はこれ以上に外国人労働者を練り出しています。）忙しける一部の会社、いくつかの国立研究所及び大学では労働許可証無しに採用してくれます。労働許可証をもらえる規範は、最近更にまたきびしくなった様です。例えばアメリカで現に働いていても、博士号を持っていないとも考えず、働いているのは
非合法ということになります。もしかでアメリカで嫁ぐということは、合法と非合法のすれ違いをやることで、細心の注意を払うことが必要です。就職で∴の詳しい手順については省きますが、このとき必ずあるインタビューは非常に面白いいものです。色々と勉強になりますし、ゆっくりとするとその他の方の上級のレストランで上等のフランス料理を出し合うようにも思われます。

本格的にアメリカへの留学と就職について書くのなら、1冊の本になる位追書かねばならないでしょうが、私にとってはあまり必要でないのですので、このあたりでペコを置きます。ともかくここに書かれた講義だけでは簡単すぎますので、本当にアメリカに行ってみようという人は、アメリカ文化センター行ってみたり、誰かと経験者に詳しい手順等を聞き入れるのだけだといいと思います。

第8回「炉物理重の学校」

今回は炉物理の基礎分野である中性子スペクトルと核データおよびフランケットを中心とした核融合炉の設計の2つのテーマを取り上げました。

時： 7月19日(月)～7月22日(木)
場所： 東京都央区市恵比寿北山毛8丁目3424 Tel.02666-82443

プログラム

7月19日(月) 7月22日(木)
(日) 7月20日(火)
開校挨拶
I.概論・熱中性子炉スペクトル
II.高速中性子スペクトル
II.中性子スペクトル
II.講義会：中性子スペクトル
(7月21日(水))
I.原3炉物理の問題点としての原子核データの理論と(NAIG)飯島俊吾

7月22日(木)
I.核融合炉のフランケットの炉物理
II.講義会：核融合炉の核データ
（8月3日(月)）
I.核融合炉中性子実験
II.講義会：まとめと今後のあり方
閉会挨拶

21-19
【研究室だより】
1．東北大学工学部 原子核工学科 椙山研究室

昭和50年度の活動概況

研究室の構成員は、中村教授を除き皆助教授で、10人で、大学院生9名、研究助手7名である。研究内容も幅広く、特に“放射線計測法とその応用”という所を特化しているが、具体的には後述の発表項目に見られるごとく種々の領域について、各研究者の個性を生かした研究が行われている。本年度の特色としては、周囲の高校中性子発生装置の稼働開始に伴い、この装置を用いた研究活動が大きな割合を占めつつあることが認められ、各種の断面積測定実験の本格化をもって始まる本研究室の仕事に今後一段とまとまりがあることが期待できる。さらに従来から行なわれてきた学外施設の利用も積極的に続けられており、東大橋研、東大浦川、新原などに派遣しての実験、研究が進められている。

研究成果報告

発表論文（予定も含む）
1. K.Kotajima, S.Inagaki, S.Iwasaki (Tohoku Univ.)
2. Y.Takeda, M.Kitamura, K.Kawase, K.Sugiyama, "A Study of Effects of Fitting Functions on Results of Gamma Ray Peak Analysis", Submitted to N.I.M.

学会発表
 Conf. on Nucl. Cross Sections and Tech., Washington D.C., March, 1975
3. 北村, "原子核化学最も重要な研究の一つ 燃焼の役割", 日本原子力学会50年会 D16
4. 古岡, 武田, 田中, "平面厚ウィニングシンセーションカウンター 製作"
 第12回核工学における同位元素研究発表会 1月12日
5. 山本, 椙山, "統計理論による核分裂生成物の質量収率の計算", 日本原子力学会
 昭和50年会 D10
6. 椙山, 原田, 小野, "C, Al, Fe, Cu のMNT中性子によって生成成断面積の測定", 同上 D13
7. 武田, 北村, 田中, "Random Search 法の放射スペクトル解析への応用" 同上 D12
 他
8. 以上、他に、模擬実験プラント Neutronico、同位同位素生成、イオンソース、原子核反応動特性などに関する研究も行われており、今後も相互に影響
 して好結果を挙げることを期待しつつ活動している。”（桜山一典）

21-20
2. 日本原子力研究所・原子炉工学部・高温炉物理研究室

当研究室は現在室員数21名（内兼務室員5名）で高温炉の炉物理の研究、核融合炉の炉物理の研究を実施しているほか、新動力機ととの研究契約により高速原型炉の模擬実験を実施している。

当研究室における研究用施設としては高速炉観察実験装置FCA、コッククロフトワルト型中性子発生装置2台、小型計算機による多目的データ処理システムがありこれら装置の改良、運転、保守のための業務テーマがあり室員の半数（内兼務者4名）がこれを担当している。

高速炉の炉物理の研究は、組織依存特性の研究、空間依存特性の研究、群集定数及び解析法の研究のサブテーマに分けられているが、具体的には部分モックアップ手法の研究、若干点をもつ深さに達する検出法の研究、群集データによりその信頼性の高められた高速炉解析システムAGLIDOYCの開発に至るまでの努力が集中されてきた。更に、大型核炉の炉物理特性の研究、運転問題に関連した高速炉系によるアクチノイド核種の増殖核のための炉物理の研究が現在進めつつある。

核融合炉の炉物理の研究に関しては、核融合ブランケットの研究、核融合炉基礎過程の研究の2つのサブテーマがあり、前者として中性子発生装置を用いEMブランケット中のneutronicsの研究が行われてきたが、現在核融合炉ブランケット化発電の研究のため3×10^12 n/sec程度の中性子源を設置することが予定されている。後者についてはプレカノ核融合の炉物理の研究のため現在1名が米国ロッテスター大学のLINEに留学中である。

動燃国からの受託研究として現在中性子の部分モックアップによる出力空間分布及び制御棒効果の測定が進捗的に行われているが、今後後には周辺部分モックアップ実験が行われる予定であり、以後はクリーンコアより高速炉核物理特性の研究へと移行してゆく予定である。

以上の項目のほか、中性子スペクトル測定法、パルス実験技術の改良、ドッパラー効果及びナトリウムボイド効果等の高速炉物理に関連するかなり中～広い研究も実施している。

50年度研究報告書類（口頭発表は除く）

1) H. Kuroi, T. Tone; SP-2000: Program for calculating fine group neutron spectrum in multi-region cell and effective broad group constants, JAERI-1240
2) H. Kuroi, et al.; ARCADIA: A comprehensive semi-automated system for cross section evaluation utilizing integral measurements, JAERI-1241
3) H. Kuroi, H. Mitani; adjustment to cross section data to fit integral experiments by least square method, J. Nucl. Sci. Tech., vol.12, No.11
4) Y. Seki, H. Nakae; Preliminary analysis of absolute fission-rate measurement in Lithium and Hybrid fusion blanket analysis, J. Nucl. Sci. Tech. (投稿中)
5) H. Mitani; on the convergence and error estimate of perturbation method in reactor calculation, J. Nucl. Sci. Tech. (投稿中)
6) H. Mitani; Estimation of multiple control rod worth with strong interaction effect in large fast reactors, J. Nucl. Sci. Tech. (投稿中)
7) K. Koyama; Semi-empirical formula for shape factor of fast reactor, J. Nucl. Sci. Tech. (投稿中)
8) A. Miyakawa, T. Minami, H. Kuroi, H. Hirota; Sensitivity and uncertainty analysis for Iron cross section, Specialist meeting of IAEA
9) N. Mizuo, M. Nakano, T. Mukayama; Reactivity measurement on far-subcritical fast system, Specialist meeting of NEACRP
10) H. Nakae; Y. Seki; Preliminary results of integral experiment on fusion fission hybrid blanket assemblies, JAERI-M-6495
11) 中野, 溝尾, 向山, 須; 高速炉体系における大きな負の反応度の測定（III）, 中性子源引抜き法, J A E R I - M - 6 4 9 6
12) 金, 小山, 黒井; トリチウムの2群定数, J A E R I - M - 6 4 9 4
13) 中野; 単一制御棒実験に基づく複数本制御棒反応度価値の推定法, J A E R I - M - 6 5 0 4
14) 白方, 越, 飯島; ダブルシンチレータ高速中性子スペクトロメータの開発, J A E R I - M - 6 4 9 2
15) 黒井, 大部, 小山, 白方, 弘田, 笹木; F C A VI - 3 集合体による3Dベンチマーク実験と解析（受託研究）, J A E R I - memo - 6 2 0 2
16) 黒井, 小山, 白方, 弘田（受託研究）; A G L I による F C A VI - 1 及び VI - 2 集合体の解析（受託研究）, J A E R I - memo - 6 2 0 9
17) 山添, 溝尾; M P D A - 9 を用いた反応率比測定用オンラインデータ処理システム, J A E R I - memo - 6 3 1 2
18) 黒井; アクチノイド核種消減処理に関する炉物理研究の現状, J A E R I - memo - 6 4 9 0
3. TCA（軽水際限実験室）

1. 研究室の現況

「TCA」は、本来はタンク型際限集合体の略称であって、装置の名称であり、我々の部屋の名前ではない。我々が、「TCAの〇〇で」と、あたかも装置の付属物であるような言い方をするのは、それが一番よく通じるからだけではない。際限集合体としては、我々が最もよく動いているこの炉に対する否定の念がついているのである。この点では、我々が否定的念を抱いてしまっていないとは言えない——。しかし、別にそれが非常に故障率が低く、安心して使える炉である。

グループの構成員数は44名で、6人で現在スウェーデンのStudent Workshop研究者へ長期出張中である。この人数で炉の運転、保全から報告書作成までの一切を遂行していくことは、なかなか大変な仕事であるが、炉の運用も週1回程度にとどめることができ得ない状況である。メンバーの各々が到達している研究テーマは、炉物理から物性まで多岐にわたり、実験スケジュールに束縛されるいない。1～2年待つことはないのが普通である。

TCAの動研と共同で数42年以降に設立した研究テーマである「プの熱炉利用に関する実験・解析」は、いよいよ本年度をもって終了することになった。本年度はこのテーマに関連する研究結果の総合評価を進め、報告書をまとめる事と、残っている実験の遂行とが主な仕事になる。プ燃料のJPDUへの照射実験まで含めていた当初の計画を変更して、際限実験の段階を終了させるを得なかったものである。本テーマに代って、今年度大幅に予算増が認められたテーマは、「照射時燃料の非破壊測定」である。これは、JAEAの受託を受けて47年から進めていたスキャンニング法による研究を更に発展させることを目的としている。

2. 最近の活動状況

TCAの活動状況を物語る最も基本的な資料は、運動記録を録したローカル・データである。No.245に数えるこの記録の51年5月19日付のところを見ると、「録600回」とある。よく動かした人と感じさせるが、アメリカのロス・アラミスでは18,000回運転された集合体があるという事で、いかに上があるのだと思う。

昨年の7月より取扱っているのは、プ燃料格子中の吸収体効果に関する実験である。現在これら、(B + SUS)の吸収体と、Cd吸収体を用いて、パルス法による反応度とPower、Fluxにおよぶ効果の測定、吸収体効果と分布の関係を系統的につかめないという事で、現在進めている解析の主目にあつ。次いで6月からは、ロットドロップ実験、プ燃料格子内で出力変化実験が予定されている。解析の方では、プ燃料炉心の計算における熱源切断エネルギーのとり方や、プ燃料中に既設のものによる誤差差があるかについて検討が進めている。報文者で作成が難しいとされているが、多方面から要望の強いことである。
4. 日本原子力研究所原子力工業部原子力数值解析研究室、朝向年間当研究室も発足以来3年経過した。前囲年10月までを報告したが、それに続く研究活動は大きく歩めて、以下に述べる有限差分法、モンテカルロ法、科学計算用サブルーチンライブラリのアルゴリズム、の3つに関連している。その他としては、核中性子核特異解析シミュレーション開発（JAERI-M-5991）、原子サブミクロン研究用NSRの特性解析（原子力学実験、19-354）、伝数読取特異計算コードGURMET-2の開発（JAERI-M-6491）があげられる。又、時間依存輸送方程式の数値解析アルゴリズムとベンチマーク・テストの現状評価（JAERI-M-6273）、金属間結晶電子顕微鏡像への多波効果の解析（JAERI-M-5297）なども実施された。

1) 有限差分法の中性子輸送計算への応用

99年度は有限差分法が高精度近似の数値解析であることに着目し、2次元円柱系では有限差分法と同じような格子の空間要素を用い、有限差分法コードFEMR2を完成した。有限要素SωコードTOWTRANとの相互比較の結果、FEMR2では、かなり粗い空間メッシュでも収束した収束結果が得られたことが示された。

50年度は有限差分法のもう一つの特長である複雑な幾何形状構造に着目し、3次元円柱

解析コードの開発を進めた。3次元有限差分として3次元と2次次元の組合せを用い、有限要素上で共通したラプラス方程式をもって、多解中性子数演算子リリソース・ゲ

ルシン法で処理する。これにより作られた巨大な行列方程式は、断面電子計算機

コード・メモリを求めるように、3次元系を2次次元平面に重ね合わせて順次数の

バンド構造となっている平面角のサブマトリックスを単位として処理する。これアルゴリズムに従って計算プログラムが作成され、3次元有限要素コードCITATIONとの比較がなされている。

これらの計算コードを時間依存問題へ拡張するため、1次元解析条件の様式をモデルにし、時間変数に対する数々の近似法によるアルゴリズムを次式化した。そしてフィードバックのある非線型内は、エンジニアリング法と階級近似を基にして数値計算評価を行ってお

るが、階級近似と数値計算法については条件が欠落することも十分に注意し、これら近似の誤差評価を基にした（JAERI-M-6391）。

2) モンテカルロ法の応用開発

最初の応用開発として99年度から進められている。MORSEコードへと拡張され、再約

合の数値解析法の組込みと、その適用性の評価を確立した。再約合の数値計算の結果、各

空間メッシュについて中性子合計および中性子の増減を考慮した正確な結果が得られ、原子核分裂的な新しいサブリング法として使われることが示唆（Nucl. Sci. Eng., 57, 324, 及びJAERI-M-6259）。

99年度から開始されているトランス・プラズマ中の中性子輸送解析の開発については、まず

円形断面トランスの数値的表現、及び同条件下の中性子の強度をトランスするアルゴリズムを確立し、MORSEコードに組み込む事例を検討した。又中性子の電力

断面積を、多数式近似を用いて求め、計算プログラムを作成した（JAERI-M-6199）。これによりトランス表面から入射した中性子の空間分布を求め、円形断

面積を、多数式近似を用いて求め、計算プログラムを作成した（JAERI-M-6199）。
似トーラスに対する結果の比較検討を行なった。更に中性粒子打ち込み方法なども考慮するため、トーラス小円の中心まわりの非対称分布を数えるように計算コードが改造され、これにより非対称エネルギー・モデルでの詳細解析が進まれた。クレオ、トラウマーが使われた加熱に関する実験の解析でも応用され、プラズマ中の中性粒子スペクトルと、生成された高速イオンを観察し測定した。

モニタールームのモニタの使用として、これも14年度に開始された。原子核の複雑な形状部分ついても、変形による変化の程度を変えて計算が推進された。一般に相関標本抽出法が用いられるが、変形による核分裂の中性子源の変化を考慮していない。従ってこの影響による変形変化、粒子のエネルギーは求められる相関標本抽出法を考慮され、MORSEコードに組み込まれた。

3) 科学計算用サブルーチン・ライブラリのアルゴリズム調査研究

一般に大学院の電子計算機で長時間計算する計算では、SSL（科学計算用サブルーチンライブラリ）の性能が重要な役割を果たすので、これを常に監視し、改善していくことが要求される。ある一つの数値計算の分野でも、計算時間や精度の兼ね合わせが可能なSSLはなく、従っていくつかの特急の方程式サブルーチンを用意しておき、何回も使い分けるよう、実態を把握しておくことも重要である。最近の大型計算機の普及に伴って、数値解析やアルゴリズムの面での発展も着しく、このため1970年前後約10年間について文献調査を実施し、そのレポートをまとめて、これサーベイの主眼は、新しいサブルーチンの作成、既存のものを改良しバックグラウンドとして、新しい数値解析理論やその数値計算への適用などを調査することで、以下の12項目に分類して調査・執筆した。

① 一般・絶対固数（JAERI-memo 5924），② 大数・超数オフセット（JAERI-memo 6296），③ 隣接 FFT 特殊（JAERI-memo 5939），④ 推定と固有値・固有ベクトル（JAERI-memo 6225），⑤ 理論計画法（JAERI-memo 6198），⑥ 矢数オフセット（JAERI-memo 5725），⑦ 基数オフセット（JAERI-memo 5773），⑧ 基数オフセット（JAERI-memo 5953），⑨ 高速フーリエ変換（FFT）（JAERI-memo 5726），⑩ 内挿法、最小自乗法、ミニックス近似（JAERI-memo 6147），日本原子力学会誌，19，33，及び情報処理，17，417，⑪ 等計（未刊）
5. 動燃・大洗工学センター重水臨界実験室

当室（昭和50年度）は新型転換炉「フーゲン」および同型機関に関する物理実験と性能解析を行なっている。また、研究は、バルス中性子実験、ミクロ・パラメタ測定、炉心性能実験およびそれらの理論解析が中心テーマとなっている。炉心設営は昭和50年度まで、クリーン化に向けても、アルティナム燃料装填炉心用実験を行った。51年度は重水臨界材中に5ppmのポロンを添加して炉心に設けた各種実験も計画されている。昭和50年度および51年度の主な研究テーマは次にあげる。

昭和50年度
1. 環境およびアルティナム燃料装填炉心の材料パッケリングの測定
2. バルス中性子法による冷却材ホイド反射度の測定
3. アルティナム燃料装填炉心の各種ミクロ・パラメタの測定
4. 単位格子内熱中性子束分布の測定
5. 各種燃料クラスタ内部反射率分布の測定
6. 特別なステッシャボイド・バンドの中性子束分布の測定

昭和51年度
1. 上記1, 2, 3, 4 および5の測定
2. 副鉄磁核リッピの測定
3. 温度および密度の測定

その他、構造および温度特性の温度反射度係数の解析についても研究中である。また、詳細設計コード「メジア」および「ランプ・A」を用いた2種の解密を実施し、設計検証を行っている。今後の実験として、60本燃料クラスター（現在は22本燃料クラスター）を用いた実験や、各種リビアリ燃料クラスター用データ検討されている。

（口頭発表）ANS, 1975

1. Heavy Water Critical Experiments for FUGEN (I)
 Void Reactivity in Plutonium Lattice
2. Heavy Water Critical Experiments for FUGEN (II)
 Cell Flux Distribution in Plutonium Lattice

AECL, 1975

1. Heavy Water Critical Experiments on Plutonium Lattice

日本原子力学会

1. クラスター型燃料搭載に行う材料パッキングの測定
2. 長さ20cm×6cm混合燃料クラスター系材料反射率の測定
3. Gd2O3燃焼材を使用した燃料交換による燃焼度の測定
4. P,燃料節分燃料炉心の冷却材ホイド反射度の測定
5. Gd金属ウェーラを装着したクラスター燃料の燃焼特性
6. 東京工業大学 原子炉工学研究所 原子炉物理部門 山室研究室

本研究室は、これまで終始一貫して、中性子と物質の相互作用によって生じる基礎的な物理現象を微視的および巨視的な立場から研究し、研究成果を原子炉の開発に役立てることを目指してきた。しかし、最近は高速炉および重費核炉をとりまく物理現象の研究へと移りつつある。構成員数は、山室教授以下助手2名、技官1名、秘書1名、博士1年1名、修士2年5名、修士1年4名、学部4年生の計18名から成っている。最近の特色の一つは、G1A社で核設計を担当していた若いファイトのある関本博士が助手として我々の研究グループに加わり、炉物理の基礎、応用の両面からの充実した発展をめざしていることである。もう一つの大きな特色は、今年4月から3MeV・デーサ・クラフ型加速器である米国NECのペレント粒子加速装置の建設が、本研究室と核物理物理部門の福田、一男研究室の協力によって進められていることである。ペレントが従来の低エネルギー・ウィン・デ・クラフと大きく異なる点は、\(\text{①} \)チエインによる電荷の遊離を用いて摂動を除き、加速電圧のリディアルを少なくし、\(\text{②} \)いわゆる真空管状によつてウランまでの重イオン加速を可能にしていることをである。また、この加速器はパルスで2ns、くり返し周波数MHzのビームパルス化装置とパルセーターを備えており、パルス中性子を発生することができるのをこれを利用した炉物理の基礎実験計画されている。

現在行なわれている主な研究題目

1. 中性子捕獲断面積の精度測定
2. 中性子捕獲X線に関する研究
3. 高エネルギー中性子による放射捕獲反応の研究
4. X線生成断面積の研究
5. 核融合炉材料の核データの評価
6. 高速炉及び核融合炉クラインネットにおけるニュートロニクスの研究

発表論文

（北村日出男 記）
7. 武蔵工業大学 原子力研究所

当研究室は、研究・教育・訓練用のTRIGA-II型原子炉を所有しており、研究学の諸活動は全てこの原子炉とその周辺において営まれていると言ってよい。現在、所属は研究職員4名、非常勤4名、事務職員2名、計10名である。今年度の卒業生は大学院生5名、学部卒業生9名、計14名である。

研究室の活動は主に「原子炉とミュオンを用いた放射線データ処理システム」（文献参照）と組合わせて行なわれる放射性分析、及び「原子炉からの熱中性子の生物医学照射への利用、並びに「原子炉照射源の更新」を主に、現在11名）を中心として今年度より全国大学の共同利用施設として共同研究が、武蔵工業大学を含むとしてスタートすることになっている。現在行なわれている研究活動としては、「1）にく

関連する基礎研究、2）にく関連して精密な線量測定に関する研究、3）にく関連して原子炉の自動制御に関する研究等がある。

今年度の活動報告としては、医学照射標準化への原子炉施設の改築工事が昨年秋から開始されたことを含め、昨年12月4日に原子炉の使用前検査に合格し、昨年12月4日12月16日～20日にかけて1回回線測定実験（参加者：神田哲治、佐藤秀司、小野光一、吉村誠（東京電力）、木村部（東京電力）、藤田健二、武蔵工業大学研究員8名）を、同じく昭和51年1月25日～29日にかけて2回回線測定実験を行い、放射線照射源の構造決定と人体ファントムによる全身被曝量の測定を行なった。現在これらのデータをもとに、原子炉に対して「原子炉の使用目的の選定」の申請を行なっており、医療目的に使用出来ると想定されるのは8月頃になると予定である。

尚最後に申し上げまでも、これを含むわが「原子炉による放射線治療」ワーキンググループ研究会で本年度中も計画中である。今年度の共同利用実験にここに述べたように成功を収め、今年度に引き続き次年度に引き続き、さらなる進歩、発展をお願い申し上げます。}

(*1) 現在の予定として、今年度予算・成立を踏まえて、5月末まで共同利用実施会を準備し、募集案書類の決定をし、7月～8月共同利用の申請受付および選定が予定されている

（51.4.30 東京

21-28
8. 住友原子力工業（株）技術部 炉物理グループ

当社の炉物理グループは極めて小人数（4名）であるため、大きなプロジェクトを手掛ける能力は無く、極めて限定された範囲での活動しか行なっていない。従って、ここ数年、力を入れて行なって来た仕事と言えば、基礎的な分野では核データ、実用的な分野では炉用炉の炉心設計を挙げることができると思うので、この二つつに就いて御紹介したいと思う。

1. 核データ関係

核データは原研シンガ研究委員会発足以来の“つつき”的で年の出云と可成り長いものになるが、ここ数年数比的時間とかけてやって来たのは233Uの核データ評価である。これは始めは同委員会核データ専門部会の中に核データ評価ワーキンググループの研究データとして扱われた重い核（233U, 235U, 238Pu, 241Pu）の評価の一部として筆者部が担当し、シンガ研究会円のボランティア精神に従って、実験データの収集から始めて依頼を受めていたが、原研核データ研究室（6月1日より原子核データ室）がJENDL-1（Japanese Evaluated Nuclear Data Library）の依頼を計画・実施するに際して、原研の委託業務となった。委託業務開と、タイムスケジュールに追われて可成り忙しくなったが、逆に予定通りの作業を進めるので、本年1月には評価結果が核データ研究室へ提出した。評価を行なったquantityはQ_E, Q_N, α, Q_{233}, Q_{235}, Q_{238}, Q_{1m}, Q_{2m}, Q_{3m}, Q_{4m}, Q_{5m}与δ(q/m)のルジャンドル係数、及び非弾性散乱のexcitation functionであり、エネルギー範囲は1keV～15MeVである。233Uは核分裂（特に軽水炉）における重要且た基本的な核種であり、それ丈に測定データも豊富であるが、よく調べると、その豊富さは当然ながらquantityの重要さに匹敵している。即ちQ_Eと解釈にQ_N, α, Q_{233}等は多数の測定データを有するが、Q_{233}, Q_{235}, Q_{238}, Q_{1m}等に関しては測定データが乏しい。そこでQ_{233}及びQ_{235}の評価に関しては、原研五十嵐氏等が開発した計算コードELIESE-3及びTOTALを含めて理論計算を行ない、測定データの不足をカバーした。これ等の評価値は逐次微分測定データに基づいて求められたものであり、従ってこれ等の評価値から作られた核データが適切なものであるか否かは判らない。これに於ては現在“JENDL-1 細分差評価ワーキンググループ”がベンチマーク炉を用いてチェックすべく準備を進めている。評価をした者が評価される立場になつた次第である。

次に235Uと平行して作業を進めたものは核分裂生成物（FP）のQ_{FP}である。これも上記核データ専門部会の中の“高速炉用FP核データワーキンググループ”の作業の一部である。原子炉内に蓄積するFP核種には中性子捕獲は炉心特性、特に燃焼特性に重要な影響を及ぼすが、FP核種のQ_{FP}に就いては、特に1keV以上の高速領域に於ては意外な核測定データが少なく、昭和30年に同ワーキンググループがまとめた最重要FP核種の評価に於ても、27核種中Q_{FP}の測定データが在るものは15核種に過ぎなかった。現在、この27核種に次ぐ重要な核種として約60核種を選定し、これ等の核種のQ_{FP}データを調査、収集しているが、上記の如くデータの足数は難い。従って測定データが1点も無い核種に対しては、測定データが存在する前後の核種のQ_{FP}の値から推定する事が必要となるので、Q_{FP}のデータ収
集と共に、Oneのsystematicsに就ても検討を進めている。
最後に、この50年度の原研委託業務であるが、核融合炉の燃料として使用される*Vの核データの調査、收集を行なっている。対象が核融合であるので、エネルギーは14～15 MeVを中心にし、又，quantityはO2，O3は当然ながら、(7, p)，(7, 2n)等の同位元素に対する重点を置いて、効率の良いデータ收集を一層努力している。
2. 船用炉開発
核心設計に関する主な業務としては、S46年度より船用炉の炉心設計を現在進めて行なっている。即ち、S46年4月に日本原子力協会に原子力船協会研究部会が設置された時、これに参加し、“むっと”に続く原子力を2船の概念設計の一部を担当した。もう少し詳しく書くと，これは“船用船体型加圧水炉の概念設計に関する実験研究”なるテーマで，
日本原子力研究開発を通して政府委託費を受けてS46年度迄3年間継続して実施された。
この概念設計を開始するに当たって想定された2船の主な仕様は，軸長：12万馬力，
長さ：268 m，巾：32.2 m，深さ：19.3 m，排水量：42,700 t，載客量：21,000 t，速力：
最大33ノット，原子炉発出力：最大330 MWであり，艦種は高速コンテナ船である。又，
核炉は等価直径約2 m，炉心高さ：2 mで“むっと”と同じ32体の燃料集合体で構成
され，燃料集合体の寸法は30.45×30.45×200 m，燃料集合体各々の燃料本数：356 本，
不可燃性吸収材：36本，制御棒48本である。又，燃料交換周期はシャッフルリング無しで，船の
定期検査に合わせ4年とした。
初年度は核熱子備設計を担当し，上記炉心に就て炉心特性を計算し，要求された条件を
満たす炉心領域数と燃料濃縮度及び可燃性吸収棒のボロク濃度，炉心寿命等を求めた。しか
し船用炉炉心は陸上の炉に比べて小型であり，出力分布の不均等が難しかった上，炉心寿命
は稼働率の約4年同を要求されるので，経済性を考慮した炉心の最適化は非常に難しか
り問題である。そこで，S47，48年度は初年度の結果を基にして炉心サーベイ計算を行な
い，燃料濃縮度とボロク濃度の最適組合せを求めた。このサーベイ計算で得られた最終結
果は初年度の結果と比べて大幅に改良となった。又，可燃性有毒としては吸収棒の他に，
ケミカルシムに就てもサーベイを行なった。
続いてS49年度には“船用炉型式の技術的評価に関する研究”の中で，中性子源の設計
を担当した。中性子源はその挿入位置によってdetectorに到達する中性子束の大きさが大
小に変化するので，輸送コードを用いて，中性子源の各位置を含めてその関連挿入位置を
決定した。1次線源としてはGf，2次線源としてはSb-Beを採用した。
S50年度には，年度末に至って原子力船組立事業団より“むっと”の炉心再解析の業務が
委託され，現在これを実施中である。今回の再解析の対象となっている炉物理量は，冷凝
機能，定格出力に関係する実効増殖率，制御棒反応性値，出力分布等であるが，“むっと”
は御承知の通り実際出力での実験を行なっているので，これに関するデータが無いため，従
って計算値は信頼性の高いものでなければ意味が無いため，そこで計算手法や定数の信頼性
をチックする目的から，前段階として，原研トCAで得られている実験データの解析を行
なっているが，現在返るところ極めて良好な結果が得られている。 (私延英三記)
9. 川崎重工業（株）技術本部原子力技術部

1. 構設関係

過去一年間の主要作業項目と、その作業時間の割合は以下のとおりであった。
1) 原子力研究所附属 多目的高温ガス実験炉設計作業
 （～40%）
 - 三次元構造計算による機械特性の把握を中心として検討した。
2) ガス炉設計技術の詳細化
 （～30%）
 a. 非均質性の評価
 - 高温ガス炉は元来均質であるとされてきたが、固有の燃料の非均質を含め、
 非均質の取扱いが重要である。
 b. 実験との比較による計算法、ライブラリデータの評価
 c. 燃焼解析精度の向上
 - 可燃性ガスの解析法の改良
 d. ガス高温炉
 この作業の一環として、日奨会 FGPGで作業に参加し、データの調査を行った。
3) 設計作業効率の向上のための作業
 （～30%）

2. 適装関係

1) 多目的高温ガス実験炉設計作業
 - 三次元解析・拡散計算（コード領域は Line-of-Sight 方式適用）による原子炉本体
 の核兵器等、核兵器等の評価と、一次冷却系統の配管へのFP沈着量解析等。
2) LMFBR関係
 a. 輸送計算用54群中性子-ガスメル核結合群数ライブラリ作成と高速炉本
 材への適用
 - ENDF/B-VII.2核データ・群定数算定コード AMPX で処理し、中性子・54群、ガス
 メル内30群の群定数ライブラリ（10群束）も作成し、高速炉本体での流体を
 含む解析結果が得られることを確認した。
 b. 二次元解析・拡散コード・システムの改良と高速炉本体への適用
 - JAERI-FAST-70から20群の拡散スキーム群定数を作成し、25群の除去断
 面損が合わせて、高速増殖型炉への適用を実施中。
3) 鉄の微分アベド計算
 - 原子力安全研究協会の作業の一環として、ANISNによる鉄の中性子微分アベドを
 計算した。
4) 材料の照射効果に関する研究
3. その他
これ等、多目的高溫ガス実験炉に関しては工学的安全系に関連した安全設計を実施しており、また機械関係ではプランケット設計法の確立とトリウム技術の調査研究も実施している。

(渡辺 隆, 東京義治 記)

10. 名古屋大学工学部 原子核工学科教室 玉羽研究室

50年度末に引き続き、5つのグループで活動している。昨年度物理研究組合当番校の役目を果たしたこととは、名大外の学會員との連携を意識する上でプラスであった。昨年度まででの刺激の著しい自己満足の状態から一掃される感があるのだが、他の原因もあるうが、偶然の一致ではなろう。

I. 高イオン速質子スペクトルグループ（玉羽教授, 大森助手, 若城(M2)） 高イオン速質子の測定を目指し、玉羽の障壁指向をもっている。ORNLのイオン源INTEREMで得た経験をもとに、目標は速速型500kV、イオンとしては、N⁺、Ar⁺までを目標としている。

II. 高速中性子スペクトルグループ（市府助手, 中村(M2), 坂井(4年), 三橋(4年), 杉里(4年)） 50年度末で東大炉からのスペクトル測定に主を注ぎ、(a)有機シンチレータ→FERDORによるunfolding、(b)ファレルシーケンス法、(c)フェライト法を採用して来た。さらに50年度からは、原研高速炉物理研究室との協力で、(a)の手法による体積スペクトル測定を開始した。今年も7月上旬から同測定を遂行。昨年度のデータ処理経験を生かすべく、好結果を期待している。また、核融合炉物理計画研究＝R&Dコラボスのメンバーとして、他大学と合同で購入したリソーム体を用いての測定も、6月中旬前後3月下旬に名大の寄託が達成される。この核試験は、ゆくゆくは東北大学で実施しないことになるが、その過程は次第に盛り上がってきている。

III. 中性子実験、KUCA実験グループ（村松助教授, 若松技官, 山根(実験技官), 須城(M2), 岩崎常一郎(M2), 新川(M2), 田中(M1), 八木(4年), 伊東雅昭(4年), 小松(4年), 剣(4年)） 50年度末、KUCA実験の測定、データ解析、各種モデル計算の一部を、国立原子力研究所として分担した。前年度の実験と同様、データ解析が得られた。今年度は、この成果を踏まえて、筑波HFR炉CAによる模擬実験の内、前年で試験解析を主目標として、ここに関連したテーマに皆が力を合わせて取り組んでいる。この成果、3~4年前かに、何れは予想を超えた。各人のテーマが関連しない、という声は周囲に広がった。村松の研究室では、各人のテーマが関連しないから、以前を残して残らなければならないのだ。
一方黒鏡II領域体の中性子源実験については、筑波山脈から放射性核(Na(21), P(32), S(32))を測定した実験計画を次元コード上で模擬作成分で、実験解析の定量化に役立つことが考えられる。
IV. 上記以外の活動 昨年9月12日に原発稼働を開始に伴い設置された
核の観察用のため、田中、田中、田中と重複が見られ

[発表論文]
Yamane and Tamagawa, “A New Method of Neutron Wave Measurements,” JNST 12, 772 (76).

[投稿中]
Yamane and others, “The Neutron Wave Interference Associated with the Neutron Slowing-Down in Graphite,” JNST.
S. Itah and Tamagawa, “Rigorous Treatment of the Spectral Distortion Caused by the Use of Time-to-
Amplitude Converter,” Memoirs of the Faculty of Engineering, Nagoya Univ. (1976)

[口頭発表]
2. 超電力,

A18 相良, 前川, 核融合炉の放射能観察
C15 他社, 木村体系中の性質, 乾燥
C19 藤岡, KECA起電力変換の温度特性
C20 藤岡, KECA起電力変換の温変特性, 乾燥水位の変動
D20 役川, 経由炉の動作特性解析

（文献 仁科等）

21-33
11. 京教大原子画子学・エネルギー研究所 藤木研究室（原子安定測定学部内）

1. 最近の活動状況の一部現状の研究テーマ

我々の研究室では実験プラント、検証計画、原子カシステムの推特性、制御、安全
性に関する基礎的研究を行い、実際の研究開発活動において、文部省科研究、総合研究、高気圧バウリスガラス化学の
安全性に関する研究、基礎研究の成果を含め、研究分野は多様に広がって
いる。現状、研究メンバーとして、藤木教授、横山助教、木村助手、大西助手、佐藤
教授の他に、大学院修士1名、大学院学生2名が在籍している。なお、吉川雅子氏は昨
年尼崎市企業局に移籍された。現在までにまとまった研究成果は以下に掲げた。

研究テーマをまとめた概要を述べていく。(1) “原子カ冷却系や異常診断に関する
研究”；冷却系実験装置の改修を行い、実際における冷却系の流れの解析方
法、異常診断技術の開発と目的とした実証的研究を行うこと。
(2) “無線電フィルタを用
いた原子カ異常診断システムに関する研究”；実験装置の解析法を用い、無線電
フィルタの内部流れの検討を行い、異常時の状況推定および異常診断システムの
関連を行うこと。
(3) “不均一高圧バウリスガラス系の推特性、制御に関する研究”；高気圧バ
ウリスガラス系の推特性解析を確立することにより、平常運転時、異常時および異常条件変更時
の制御方法を明らかにする。

2. 発表論文

星川、高橋、藤井： "Optimization of In-core Fuel Management, Cycle Period and Power
Scheduling of Nuclear Power Plants by Large Scale Nonlinear Programming"
A.N.S. Topical Meeting on Computational Methods in Nuclear Engineering, April (1975)

若林、山口、伊奈、近藤： "Study on Diagnosis System of Nuclear Reactor and Power

若林、吉川(PNC)： "Simulation Study on the Dynamics and Control of Japan Linac Booster"

大西、徳永、若林： "Loss of 3.52 MeV Alpha Particles in a Tokamak Reactor"
Nuclear Fusion, 投稿中

大西、若林； "Analysis of the Thermal Instability due to a Transfer Function
Considering the Slowering-down Process of a Particle" Nuclear Fusion, 投稿中

原子力学会99年会 D-15（星野、木村、西原、波美）、D-19（星野、高橋）
同上58年分科会 A-2（大西、徳永、若林）、C-29（木村、藤、佐藤、若林）
同上57年会 A-2（徳永、大西、若林）、A-6（大西、若林）、D-43（木村、藤、佐藤、若林）（未発表）
12. 京都大学工学部 原子核工学教室 西原研究室

最近の活動状況については、既に今年1月の20号に報告している。その後のもとのいて、変化は少ない。人員の変動としては、月に3人が就職のため卒業、中退し、新たに3人が加入した。物理に関する研究を進めるために進学してきた。研究室の研究内容は、以前と同様に、拡散方程式、輸送方程式の解法、群定数の評価、結合性の動特性、発生的の理論と解析、液体水素及び重水素の特性の研究を中心に進められている。

拡散方程式について、有限フーリエ変換による解析の研究が勢力的に進められている。また数値解析による解法も一応の成果を得ている。これらの研究の結果は、示し示しように論文の発表がなされている。輸送方程式の解析においては、変分法を応用した数値解析の研究が引き続き進められ、最近論文の発表も予定されている。また定常及び時間依存性の数値解の研究が始められている。高純度水素に対する群定数（特に核）の評価は、原子におけるLINAC-TOF法の実験データの解析であり、京大硝との共同研究である。つぎに炉設計の研究について説明すると、我々が炉物理実験を行う際に観測される量は、空間的、エネルギー的、時間的あるいは測定系の特性を経たものである。そこで観測値が従う方程式を求めれば、系のもう少し情報が測定系にどのように伝達されるのかが分かれる。現在この理論作りと結合核への応用も行なっている。またKUCAでの実験もすでに進行している。なお今後はさまざまな問題になると思われる高出力炉での核学についてもモデル解析の面から研究している。最後に冷中性子源材料としての液体水素及び重水素の特性の研究について説明する。この研究では、自由気体として記述されるYoung-Koppel modelに液体としての特性を兼ね備えた効果を含めることをなしている。今後中性子エネルギー計算も行なう予定である。なお金属材料における水素の挙動についても統計的な取り扱いにより調べている。前回報告後の発表論文を下に示す。

1) K. Kobayashi, "Solution of two-dimensional diffusion equation for hexagonal cells by the finite Fourier transformation", Atomkernenergie, 26 (1975) 249

（堀江洋三助手記）
13. 京都大学工学部 原子核工学教室 佐藤研究室

当研究室は現在16名で構成されている。当研究室が発足した当時、主な研究課題はガンマ線の物性を扱っていた。しかし、数十年が経過し、それは高エネルギーガンマ、重高エネルギーのカスケード現象を含む中性子及ぼすガンマ線の輸送問題にかかわるものとなっている。これは遮蔽設計対象が実験を段階的にずるガンマエネルギーシーケンスモデルを完全取り扱うか基礎的な試みから原データの単なる各種出力値（シミュレーション、反応率）等実用的段階にするなら平芝モデルの取り扱いを不可欠とする段階へと変化して来たものに対応している。エネルギー毎にあれば単色から数keV以下全波長を含む連続スペクトルへの展開であり、計算としてもしつつ中性子ガンマの混在場での制限という困難も持つ側面へと進んでいる。同時に遮蔽計算コードの開発も大きく進歩し数ミリ秒計算へと重かため、これらの発展は同時に遮蔽研究の新しい意味での遮蔽研究にとどまらず、放射線による遮蔽構体物性の変化及び安全と保健物理学的課題に直面するドメスティックへの応用をももとめている。

以下、現在当研究室で取り組まれている個別テーマを並記し若干の説明を付記するこ terによって研究者紹介としている。

3）中性子及びニーカスカシ線の伝播及び系中での輸送遮蔽問題

引き続き着実に進展する中性子、カスカシ線の輸送計算。輸送は有機液体シミュレーターを使用し、計算は計算時間などの計算速度を考慮する必要があるが、エネルギーの関数上の二次元輸送計算としての遮蔽解析法はより精度の計算結果を得るための多様モデルボルト計算法を使用した。

この研究課題は同時に中性子、カスカシ線遮蔽場での同時計算に応用され有機シミュレーターの応用がございなくなったらならないと考えられる。この課題の正確な作成やUnfolding法の検討が重要である。

2）数keV～数MeV領域の中性子スペクトル測定

この領域の測定においては辐射子ビーム計数装置を使用することを計画し、機器の有効性の検討をはじめている。さらに中性子数計数を測定するとしてポラススクラ等検討した。

3）バンクマップ実験（東京高等専門学校原子核工学教室研究施設と共同研究）

東京高等専門学校原子核工学教室研究施設と共同により、核に関する結果を国際会議に発表する。有機シミュレーターによる測定値と各種の計算（CN ISPs、MORSE、及び当研究室開発の多様モデルボルトコード）による結果の比較検討した。

4）単色中性子実験及び解析
単色中性子の透過問題においては今、十年未の一貫した研究が研究課題である。
これは中性子に関する研究がより基礎的なデータを得るものであると我々が今
日の課題として着実にしかるべきである。理論的に考えられるのは、全集
包に問題を扱う重要な課題である。最近より高精度な結果を求めるため、
Associated particle を用いたパックグラウンドの有効性を実行してみた結果、
重量中性子の測定及び有機シンセレーターのデータ陽時測定を利用し
て非弾性散乱が中性子の測定を行なっている。

2. 動的放射、光性中性子測定を解釈（東京大学との共同研究）
東京大学原子炉ライブラリックの利用で放射線法ロジウム放射線測定及び光中性子の測
定を高精度に計算するルドバーグモニタリングループによる計算との比較検討。今後東北
大学ライブラリックを利用しご研究検討。

3. スカイシート及び厚リターダからの高エネルギー中性子、ガンマ線測定（東
京大学との共同研究）
東京大学サイクロトロン（52MeV・陽電子線）を用い、厚リターダーを用い散乱する中性
子、ガンマ線を測定用有機シンセレーターの利用法の確立をめざすが、この領域での
中性子断
面積データ、発光特性データ不確かなためこの研究が重要な課題となっている。

4. 酒蒸し銃炉でのスケールなステンレスステールの腐食実験
長時間の実験期間における腐食を解釈する努力が重要である。重量及び重量不損測定法による解析
を行なう。今後電子線照射実験。計画。

5. 動的放射測定及び電子線（高エネルギー、パーソナル電子線）の線量測定のための検査
検出器の確立。
今後高速エネルギー・プラズマ中性子線ドリフトメトリーオの検討。
(1976年5月25日、丸橋正記)
九州大学工学部原子核工学教室・大田研究室

当研究室には現在、学生としてDC2名、MC4名、研究者1名が在籍しているほか、
全学部学生5名が配属され卒業研究に着手しているものである。職員5名（教授、助教授、
助手、教務員、秘書教各1名）とあわせて総勢17名が、それぞれのテーマのもとに
活動し続けている。

現在の研究対象領域は次の通りである。

1) 核データの評価・計算

今春完成された核データ・ファイルJENDL（Japanese Evaluated Nuclear
Data Library）-1に収録された核種のうち232Thを担当して評価作業を実施した。今
後も232Th核データのさらに詳しい検討を進めるとともに、シンポジウム委員会・核データ
評価部会等とも連携して研究を発展させてゆく予定である。

2) 核融合炉フレンチット工学

D-D炉のフレンチット特性の計算が、種々のフレンチット物質構成につき、精
力的に行われている。

（発表予定）「D-D核融合炉の検討」 中島

（発表予定）「D-D核融合炉の検討（IV）」 中島

3) 高速炉特性に中心とした炉物理計算

有限要素法、数理計画法を利用した高速炉燃料分布の最適化計算および、Xe増幅
の燃焼抑制効果等の解析の研究が行われている。後者についてはさらに研究が被行さ
れている。

（発表予定）「有限要素法を用いた高速炉燃料分布の最適化計算」 池田、等、工学

4) 音響解析による原子炉異常診断

水中でイケてとられた沸騰音の解析から沸騰位置の推定を行なうための基礎実験が
継続されている。

なおこのほか、高温ガス炉システムの動特性解析、および京大原子炉実験所の臨界集合
体を用いた共同利用研究「高温ガス炉設計のための実験」も実施されている。

（大澤孝明）
明治51年3月26日 12時～13時
場所：東京大学相模校舎（原子力学会年会E会場）

昭和51年度の当番校である東京大原子炉工学研究室の山室教授の司会によって議事が運営
された。議題は次の通りである。
1. 幹事選出結果の報告（東京大・阪元氏）
2. 夏の学校について（東京大・丸沢氏）
3. 報告
 (1) 企画委員（原研・松浦氏）
 (2) 編集委員（京大・木村氏）
 (3) 未臨界実験装置（阪大・住田氏）
 (4) 炉心材料専門委員（阪大・住田氏、京大・宇津呂氏）
 (5) 京大炉CA（京大・神田氏）
4. 連絡会議の発行

名議題の簡単な内容を以下に要約する。
1. 山室、高橋（東京大）、高橋（東大）、仁科（名大）、阪元（東京大）の4氏が今年度
の大事として選出された外、相沢氏（武蔵工大）が当番校によって幹事に指名された
ことが報告され、承認された。
2. 夏の学校について当番校から幹事の諸氏に依頼されたアンケートの内容が報告され
た。その結果、炉心材料専門委員の報告書の中に炉心材料スペクトルを中心に新型炉
の炉物理を夏の学校の主要テーマとして採り上げ、講師を主として発表者に依頼す
ることに決定した。
 期日は京大炉CAの大学院生合同実験の都合も加味して7月20日から7月22日ま
でとされた。この外、夏の学校は大学院生が自由に企画すべきもので、先生が
企画し学生も招待するやり方は改めた方が良いという意見があった。
3. (1) 秋の分科会と指定テーマにする案が企画委員から出され、これに対して反応度、
 反応度価値、反応度係数等はどうかという意見があった。
 (2) 今年度から学会誌に投稿された論文は2名の査読委員にみつりもらう方式を採用
 し、査読のShort noteをletterにする案が編集委員から出された。また、
 近日中、任期切れの編集委員の入れ替えがあることが報告された。
 (3) 炉心材料専門委員によってまとめられられた報告書が回収された。この報告書は専
門委員に配布される外、学会員には2000円で提供される。また、各大学にあ
る未臨界実験装置の位置づけに関する作業が行なわれているが、今後、未臨界
実験装置の基礎に新たな研究を展開するに必要な予算各大学でまとめて要求
（5）京大炉PLAでは本年度、1分断炉心の動特性を中心に約40名の共同利用を受け入れると報告された。

4. 夏の学校までに炉物理連絡会誌41号を発行する予定であると当番校から報告された。

（東工大 北沢日出男）

新会員紹介
丸大工
工藤和彦

編集後記

炉物理連絡会誌の41号を発行するに当たって、どのような内容にしたらよいか判断しかねました。結局、編集者の興味を抱いている研究分野の方々に記事を依頼するようになってしまいました。その結果、核テータと検査合戦のブランケットの炉物理に関して飯島さん（NAIG）と齋藤さん（原研）に記事を依頼しましたところ、よろしくお願いさせていただきました。また、弥生における医療用照射に関する貴重な研究論文をお寄せくださいました。古橋さん（東大）には心からお礼申し上げます。G.A社を退社されて、5月から東工大の実験研究室の助手になられた本木さんには、アメリカで学び仮の大事に関する記事をお願いしました。これからは、これ以後日本で出て仕事をしようという意欲を持っておられる若い学生諸君にお役に立たれるとと思う事があります。これらの諸君及び研究室の皆様も積極的にお寄付して下さった方々に重ねてお礼申し上げます。

最後に41号を編集しながら感じた事は数えても話題になります。会議の記事を依頼するに当たって、原稿をについて原子力学会事務局に問い合わせると、一笑に付されましたが。多分、機関誌だから当然原稿料を払わないということがあるでしょう。もしそうのように理解するのでしたら、編集者が平身低頭して記事を依頼しなくとも編集者が彼の想いをかけるくらいです。

山の論文が集まっているです。ご了承ください。「炉物理の研究」という機関誌は、炉物理の研究に関する論文、研究体制、その他広義の炉物理研究に関係する諸問題について意見、研究、情報等を掲載するものです。この中で、この機関誌の最も重要な問題が新生の研究成果に関する情報交換という役割に寄せる名研究者の期待が失われつつあるのではないだろうかという危険を感じました。もしこれが被験者でしたら新規者の意見としてお聞かせをした次号に尚一層の御協力をお願いします。

（北沢日出男）

5/7/1

21-40
炉物理連絡会の概要
（1968年4月）

1. 趣意 原子力研究の最近の進歩は誠に目さましいものがあり、本学会の責任もますます大くなってきた。また、とくに原子力研究においては、諸外国との交流がきわめて重要ななものとなってきた。このような情勢に対処するためには、まず、国内における研究者間の十分な情報交換や連絡・調整が大切である。この点については、従来わが国の原子力研究所体制の進展があまりに急であったため、必ずしも適当な現状にあるとはいかない。かねて炉物理関係研究者の間において、約2年前より4国でわたる“炉物理研究国内体制のインフォーマルミーティング”を初め、いろいろの機会をとらえて、意見の交換が重ねられた結果、本学会内に常置的な組織を設け、その活動を通じてこれらの問題を解決して行くべきであるという方針により、この連絡会が設立された。

2. 事業 国内における炉物理研究者間の相互連絡、調整の役割りを果たすため、年間約6回連絡会報として、「炉物理」（Ｂ５判オフセット印刷20〜30頁）を編集刊行する。「炉物理」はオリジナルベーバーの前段階としての報告・発表、検出器・試験装置など研究に関する情報交換、研究を進める上で必要な各種の意見発表および討議等を活発に行うためのもので、さらに、関連するニュースをも含ませ、また諸外国からのインフォーマーショングも伝わるように努める。また、春秋に総会を開催し、討論会・夏の学校なども計画して学会行事として実施する。

3. 対象 対象とする専門分野の範囲は、つぎのとおり。

1) 原子力の基礎としての核物理
2) 中性子物理
3) 原子炉理論
4) 実験
5) 核計算（Burnup Physicsを含む）
6) 効率特性
7) 原子炉建築
8) 関連する計測
9) その他の関連分野
（たとえば、エネルギー変換の基礎反応）

4. 運営 理事1名のほか、企画・編集両委員より各2〜3名および加入会員より選出した幹事若千名により運営する。

5. 連絡会員 本連絡会に加入する本会会員は、氏名・専門分野・所属・連絡先を明記して書面で事務局へ申込み、連絡会費を前金で納付する。なお、前金切れと同時に失格する。

発行・1976年7月1日 日本原子力学会・炉物理連絡会（非売品）