

Overview of Evaluated Nuclear Data and Processing

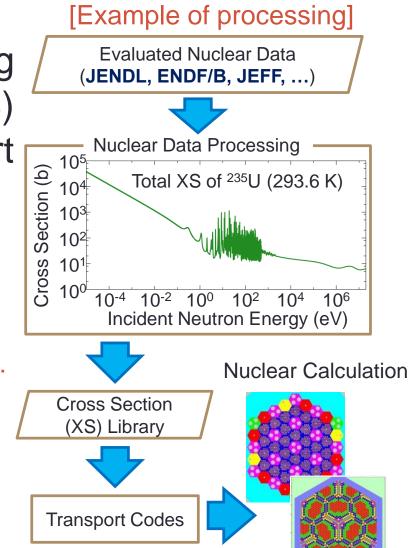
Japan Atomic Energy Agency (JAEA) Kenichi TADA

https://rpg.jaea.go.jp/main/en/program_frendy/index.html

tada.kenichi@jaea.go.jp

JAEA

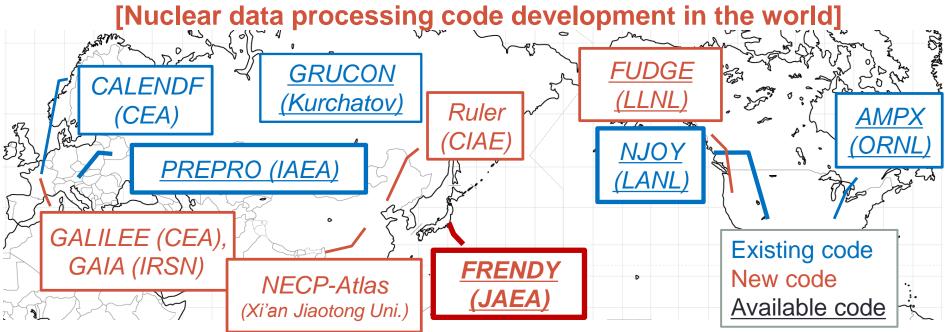
Outline


- Introduction of evaluated nuclear data library
 - MF & MT number
 - How to read evaluated nuclear data?
 - New nuclear data format GNDS
- Overview of nuclear data processing
 - Processing flow from evaluated nuclear data file to continuous energy / multi-group cross section (XS) file
 - Overview of each processing step
- Characteristics of nuclear data processing code FRENDY

What is nuclear data processing?

- Nuclear data processing generates cross section (XS) libraries for particle transport codes.
 - Not just a converter

JAE


- It performs many processes.
 - Linearization, Resonance reconstruction, Doppler broadening, …
- NJOY (LANL) and PREPRO (IAEA) are well-known in the world.

JAEA

Status of nuclear data processing code development

- Development of nuclear data processing code has been started in many institutes.
 - To process their own nuclear data library
 - To handle new nuclear data format GNDS

Ref. D. Brown, "The New Evaluated Nuclear Data File Processing Capabilities," INDC(NDS)-0695.

What is evaluated nuclear data library?

- Evaluated nuclear data library contains many physical values.
 - Cross sections, energy and angular distributions of 2nd particle, fission yield, fission spectrum, ...
- Well-known libraries
 - JENDL (Japan/JAEA)
 - Japanese Evaluated Nuclear Data Library
 - ENDF/B (USA/CSEWG)
 - Evaluated Nuclear Data File
 - JEFF (Europe, OECD/NEA)
 - Joint Evaluated Fission and Fusion File
 - TENDL (PSI, IAEA)
 - TALYS Evaluated Nuclear Data Library
 - By-product of TALYS
 - Automatically generated by TALYS
 - Others: BROND (Russia), CENDL (China)

Japanese Evaluated Nuclear Data

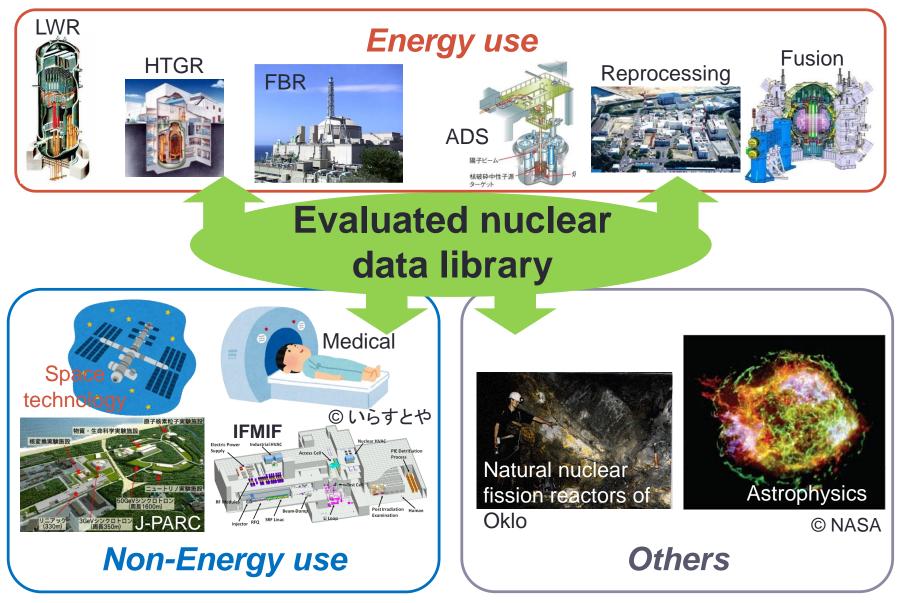
NEA

OECD

- ENDF/B means ENDF Version B
- ENDF/A (ENDF Version A) is formed in 1965 (BNL-8381).
 - Update version of UKNDL (United Kingdom Nuclear Data Library)
 - ENDF/A is not completed and it cannot be used for nuclear calculation.
- ENDF/B grew out of ENDF/A in 1966 (BNL-50066)
 - The latest version is ENDF-6 format.
 - ENDF/B-VI, -VII, and -VIII libraries use ENDF-6 format.
 - ENDF-6: format name
 - ENDF/B-VI, -VII, and -VIII: library name

Ref.: https://www.nndc.bnl.gov/endf/history.html

Mainly used for neutron transport calculation


Mainly used for burnup calculation

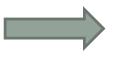
Physical values contained in nuclear data

- Cross section
 - Probability that a nuclear reaction will occur
- Angular distribution of 2nd particle
- Energy spectrum of 2nd particle
- Resolved and unresolved resonance parameters
- Number of neutrons per fission
- Fission spectrum
- Thermal scattering law data $(S(\alpha,\beta))$
- ✓ Fission product yield
- Radioactive decay data
 - T_{1/2} (hal-life) and transition probability
 - γ ray data (Transition probability, intensity, energy, ...)
 - Nuclear structure data (Level energy, spin, parity, ...)
 - Mass, abundance, …

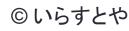
Typical use of evaluated nuclear data

ENDF-6 format

- ENDF-6 format is a de facto standard.
 - Prepared for ENDF/B library
 - Managed by CSEWG in USA
 - Cross Section Evaluation Working Group
- OECD/NEA/NSC/WPEC/SG-38 formed new nuclear data format GNDS.
 - GNDS: Generalized Nuclear Data Structure
 - Serializable in any nested hierarchical meta-language (XML/HDF5/JSON)
 - Easy to read
 - Reference (GNDS format manual)
 - Specifications for the Generalized Nuclear Database Structure (GNDS)
 - <u>https://www.oecd-nea.org/science/wpec/documents/7519-GNDS.pdf</u>



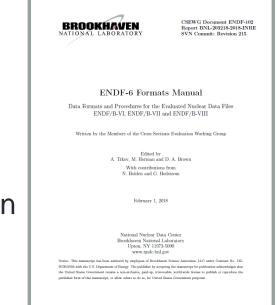
Data structure of ENDF-6 format


- Construction of data; four structures
- tape > material > file > section
 - tape : One or more material data
 - material : One nuclide or matrial (H₂O, ZrH, ...) Subdivided by MAT number
 - file : Data block

(XS, angular and energy distribution, ...) Subdivided by MF number

- section : Reaction data
 Subdivided by MT number
- Latest evaluated nuclear data library contains one material data in each file.
 - "Tape" is a relic of the past.

[Example of tape]


MAT number

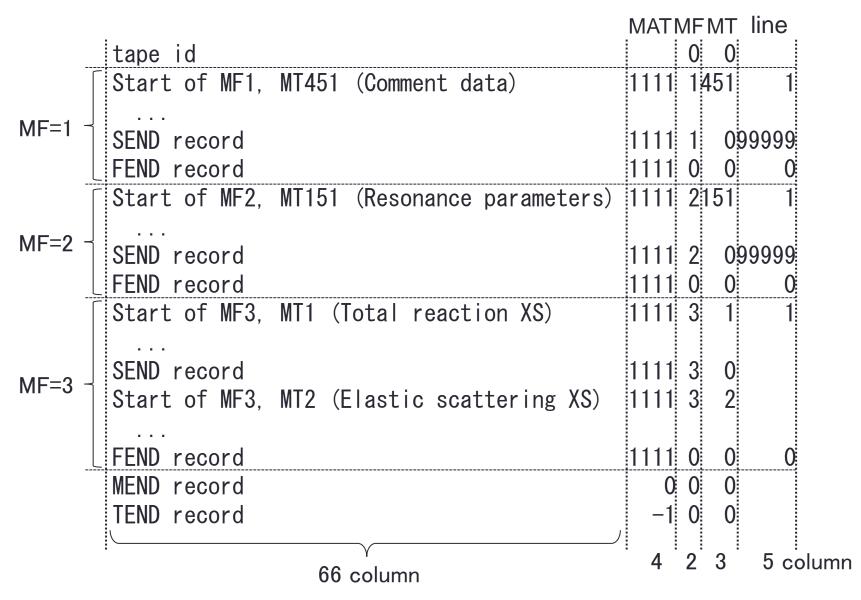
- MAT: Proton number "ZZ" + isotope number "NN"
 - Significant digits of MAT number are 4 : MAT=ZZNN.
 - The lightest stable isotope is assigned 25.
 - If there is no stable isotope, *e.g.*, Technetium and Uranium, the lightest naturally-occurring isotope number is assigned 25.
 - If atomic mass number increases/decreases 1, isotope number increases/decreases 3.
 - One ground state and two metastable states, e.g., ¹⁵⁶Tb, ^{156m1}Tb, and ^{156m2}Tb, are available.
 - Transuranic elements are set by other rule.
- Natural elements use "00" for isotope number
 - JENDL-4.0 contains natural carbon as MAT=600.
- Example of MAT number
 - ¹H:125, ²H:128, ¹⁵⁶Tb:6516, ^{156m1}Tb:6517, ^{156m2}Tb:6518
 - ²³⁰U:9213, ²³⁵U:9228, ²³⁸U:9237
 - ²⁴²Am:9546, ^{242m}Am:9547

Ref: BNL-203218-2018-INRE

Important MF numbers for neutronics calculations

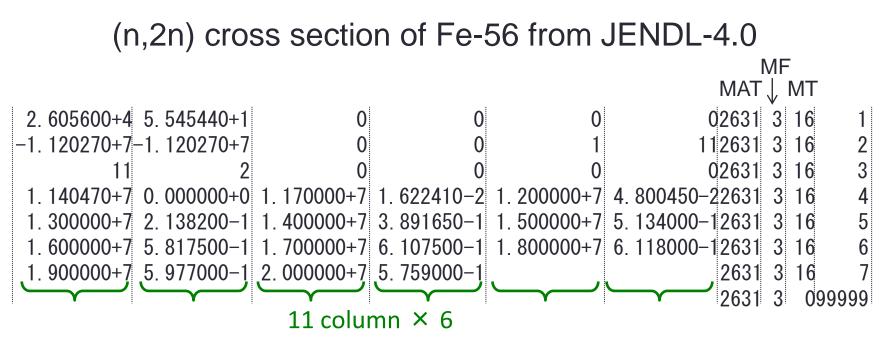
- MF= 1: General information, comment, number of neutrons per fission
- MF= 2: Resonance parameters
- MF= 3: Cross sections
- **MF= 4**: Angular distribution
- **MF= 5**: Energy distribution
- **MF= 6**: Angular and energy distribution
- MF= 7: Thermal scattering law data
- MF= 8: Decay and fission product yields
- **MF= 9**: Multiplicities of radioactive products
- MF=10: Production XS for radionuclides
- MF=11: General comments on photon production
- MF=12-15: Photon production data
- MF=30-40: Covariance data

Ref: BNL-203218-2018-INRE


Important MT numbers for neutronics calculations

- MT= 1 : (n, total)
- MT= 2 : (z, elastic)
- MT= 3 : (z, nonelastic)
- MT= 16 : (z, 2n)
- **MT= 18** : (z, fission)
- MT=51-90: (z, n_x)
- MT= 91 : (z, n_c)
- **MT=102** : (z, γ)
- **MT=151** : Resonance parameters (MF=2)
- MT=452 : Number of neutrons per fission $\bar{\nu}_T$ (MF=1)

Ref: BNL-203218-2018-INRE, Appendix B

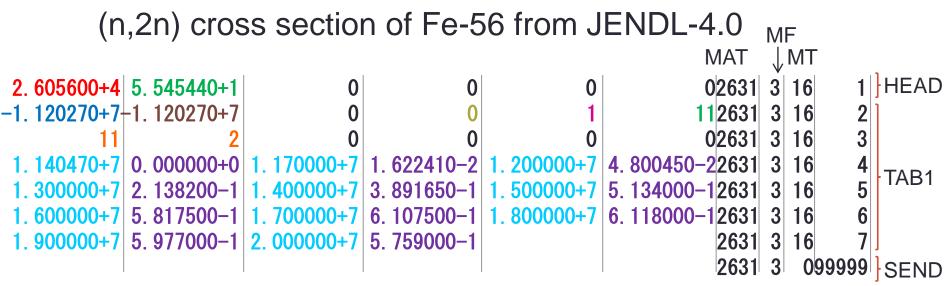


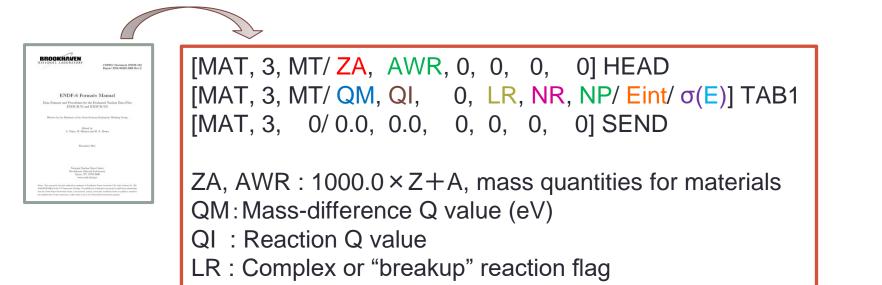
Data structure of ENDF-6 format

Example of ENDF-6 format

15

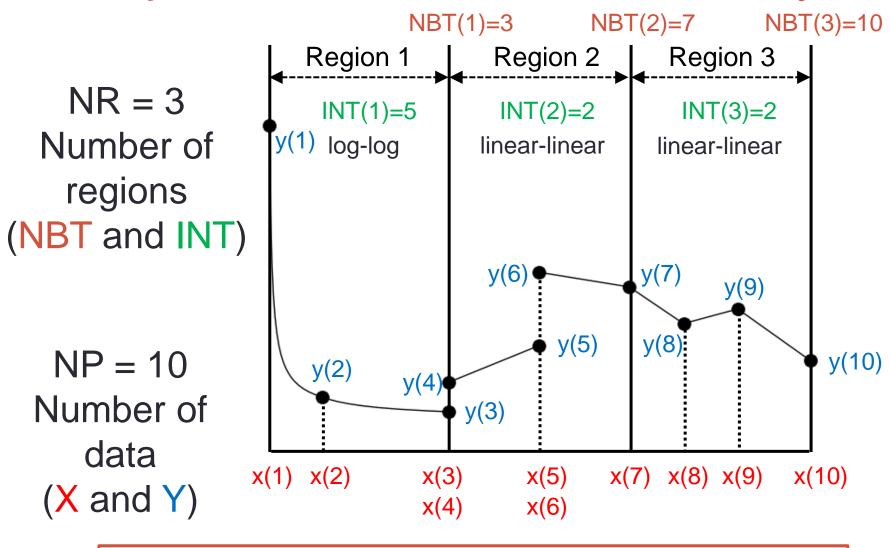
Single precision


(32 bit)


All numbers are given in fields of 11 columns.

- ± 1.234567 ± *n*
- $\pm 1.23456 \pm nn \ (nn \leq 38)$
- ± 1.23456789

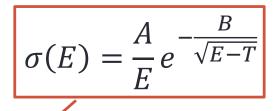
Example of XS data (MF=3)


Data form of ENDF-6 format

• Given as a table

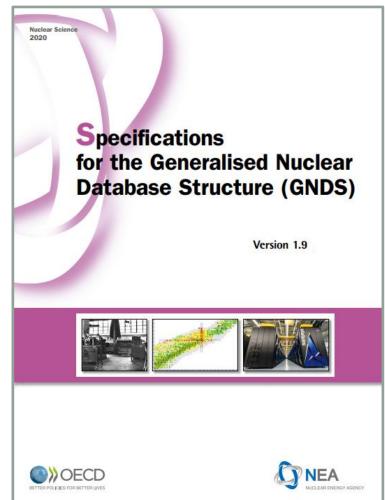
- 1-D or 2-D array: $(E_1, \sigma_1), (E_2, \sigma_2), \cdots$
- Cross section data, angular and energy distribution, ...
- Given as a parameters of a function
 - Resonance formula, Legendre polynomial, ...

Interpolation of tabulated 1-D array



Tabulated data gives (X, Y) data and interpolation.

Interpolation types used in ENDF-6 format

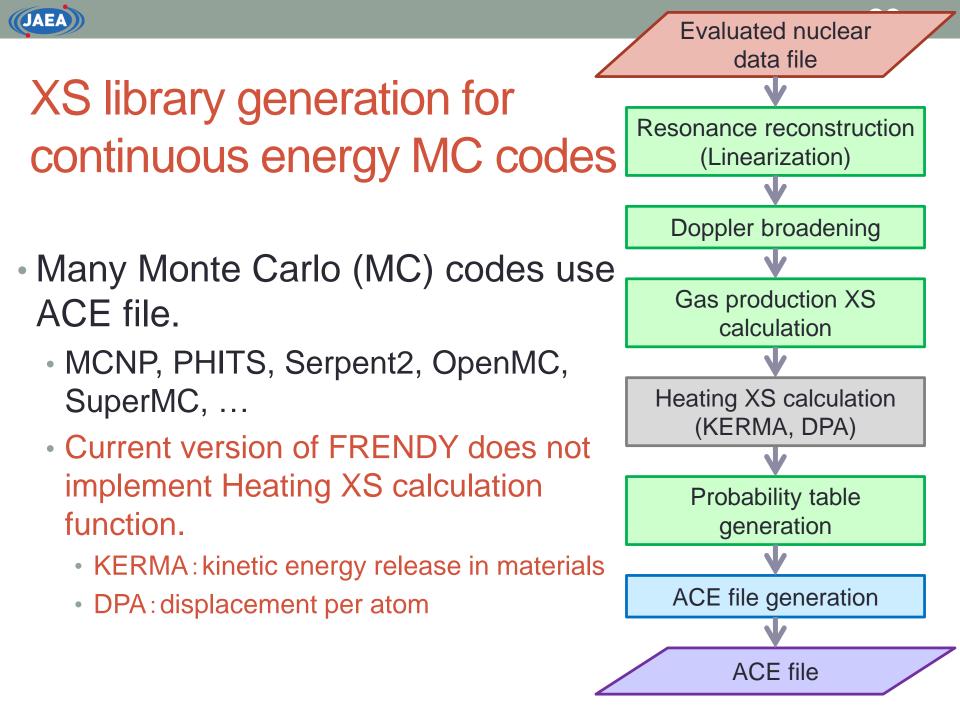

- INT=1: histogram, constant
- INT=2: linear-linear
- INT=3: y In(x) (linear-log)
- INT=4: ln(y) x (log-linear)
- INT=5: ln(y) ln(x) (log-log)

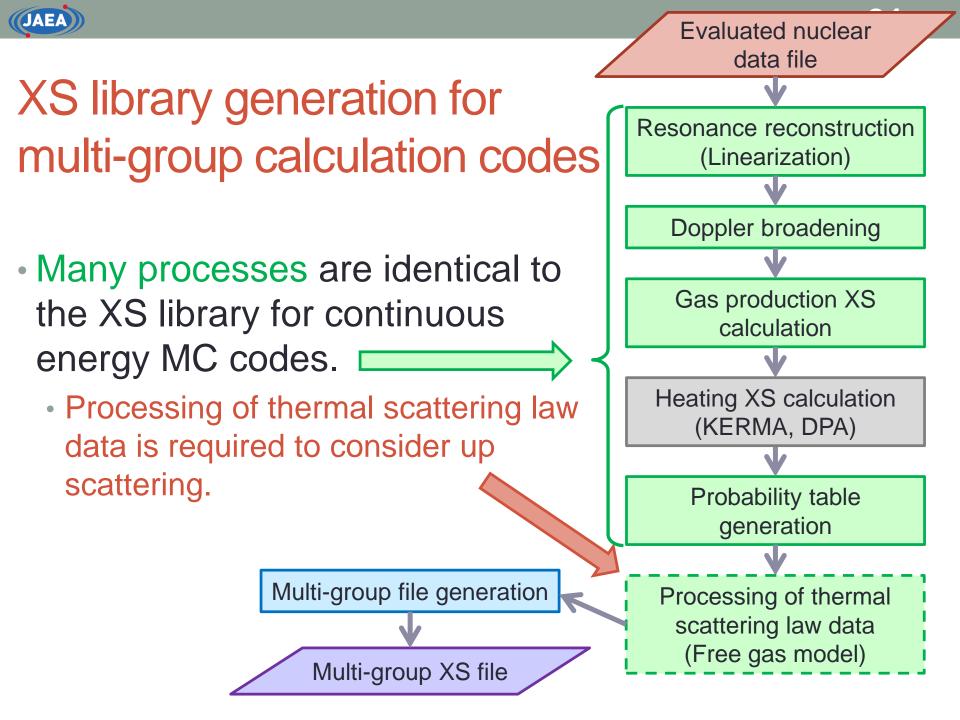
- INT=6: Special 1-D law, used for charged particle XS
- INT=11-15: method of corresponding points (2-D array)
- INT=21-25: Unit base interpolation (2-D array)

New nuclear data format: GNDS

- Formed by OECD/NEA WPEC/SG-38
 - Managed by WPEC/EG-GNDS
 - Generalized Nuclear Data Structure
 - Working Party on international nuclear data Evaluation Cooperation
- LLNL develops FUDGE and GIDI plus to handle GNDS.
 - FUDGE is nuclear data processing code for LLNL neutronics codes.
 - FUDGE can convert from ENDF-6 format to GNDS format.

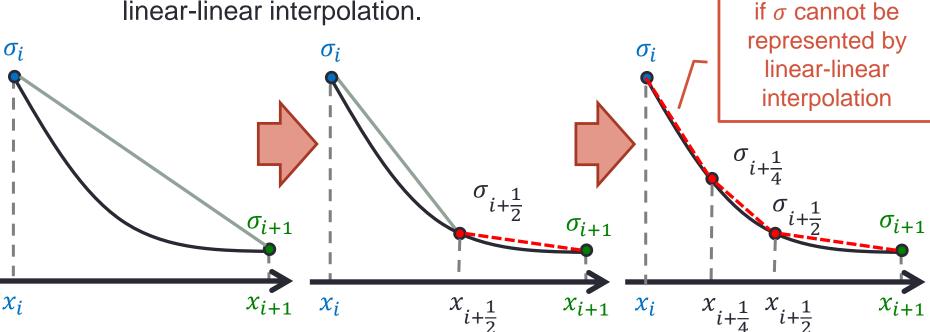
Ref: https://www.oecd-nea.org/science/wpec/documents/7519-GNDS.pdf


Example of GNDS format (XML form)


```
(n,2n) XS of Fe-56 from JENDL-4.0
                                                     (n,2n) reaction
          <reaction label="29" outputChannel="n[multiplicity:'2']</pre>
Reaction
             + Fe55 + gamma" date="1987-03-01" ENDF_MT="16">
             <crossSection nativeData="linear">
               <linear xData="XYs" length="11" accuracy="0.001">
   XS
                 <axes>
                   <axis index= "0" label= "energy_in" unit= "eV"</pre>
                        → interpolation="linear,linear" frame="lab"/>
                   <axis index= "1" label= "crossSection" unit= "b"</pre>
Interpolation
                     frame="lab"/></axes>
                 <data> 1.14e7 0.00000 1.17e7 0.0162241 1.20e7 0.0480045
                         1.30e7 0.21382 1.40e7 0.3891650 1.50e7 0.5134000
       XS data
                         1. 60e7 0. 58175 1. 70e7 0. 6107500 1. 80e7 0. 6118000
                         1.90e7 0.59770 2.00e7 0.5759000 </data></linear>
             </crossSection>
             <outputChannel genre="NBody" Q="-11202700 eV">
               <product name="n" label="n" multiplicity="2"</pre>
 Angular and
             → ENDFconversionFlag="MF6">
   energy
distribution of
                 <distributions nativeData="Legendre">
 2<sup>nd</sup> particle
                   <Legendre nativeData="LegendrePointwise">
```

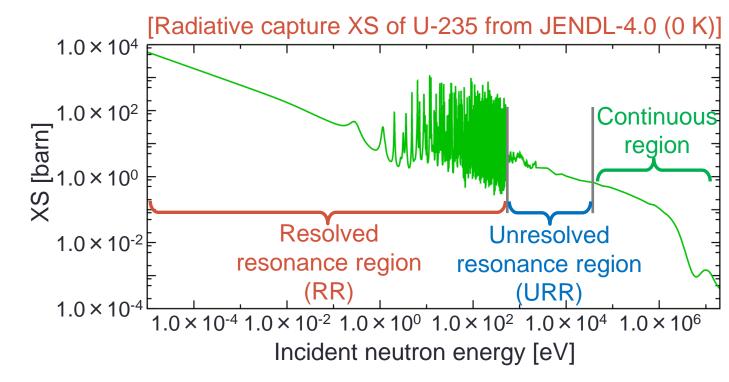

Overview of nuclear data processing

22



Linearization

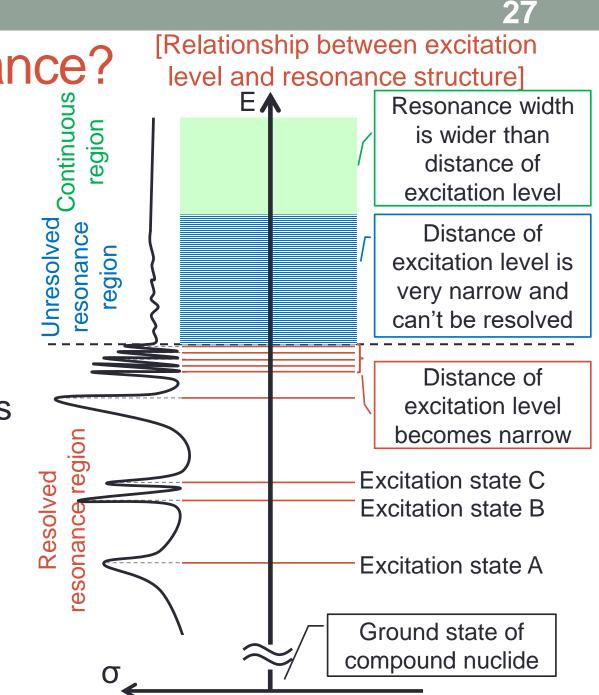
JAEA


- Evaluated nuclear data library describes cross sections with different interpolation scheme.
 - Log-log interpolation, linear-linear interpolation, ...
 - Different interpolation schemes are inconvenient.
 - Linearization is required for Doppler broadening.
 - Many nuclear calculation codes use only linear-linear interpolation.

Add middle point

Resonance reconstruction

- XS of resolved and unresolved resonance regions are given as resonance parameters of resonance formula.
 - Calculation of XS in resolved resonance region
 - Calculation of averaged XS in unresolved resonance region
 - XS in continuous region is given in MF=3.

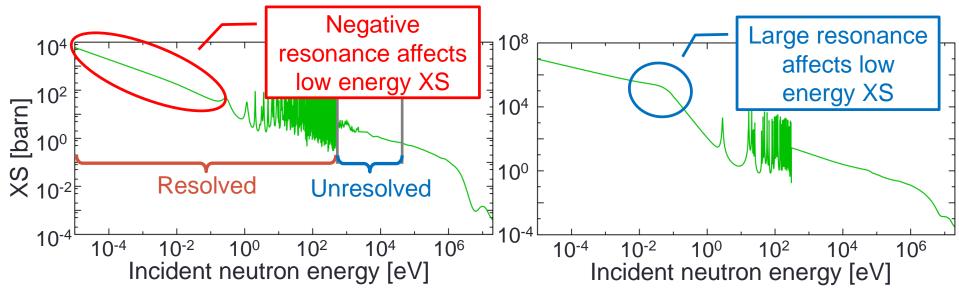


What is resonance?

• XS becomes larger.

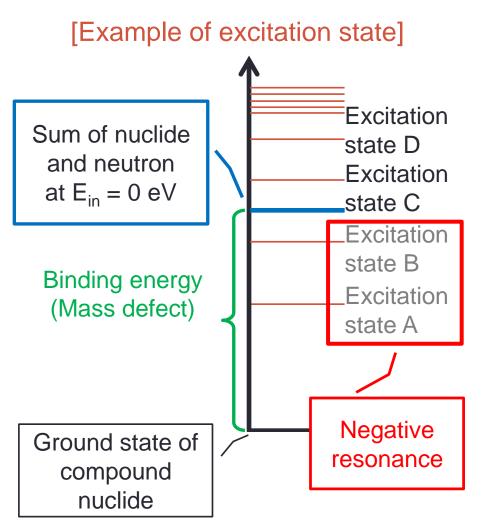
JAEA

- When sum of induced energy and binding energy is equal to excitation level of compound nuclide.
- Resonance energy is identical to the excitation level.


Cross section in low energy region

- XS in low energy region can be approximated by 1/v low.
 - The difference between actual XS and 1/v low is effect of negative resonance.
 - Several nuclides, *e.g.*, Gd-157, have large resonance in low energy region and its also affect XS in low energy region.

[Radiative capture XS of U-235 from JENDL-4.0 (0 K)]


JAEA

[Radiative capture XS of Gd-157 from JENDL-4.0 (0 K)]

What is negative resonance?

- Resonance of excitation state lower than sum of nuclide and neutron energy at E_{in} = 0 eV.
 - Compound nuclide is not grand state when 0 eV neutron is captured.
 - Binding energy should be considered.

29

Resonance formulae

- ENDF-6 format arrows to use many resonance formulae
 - Single-Level Breit-Wigner (SLBW)
 - Multi-Level Breit-Wigner (MLBW)
 - Reich-Moore
 - R-Matrix Limited
- These resonance formulae are obtained from calculation of the Schrödinger equation for the multi-particle system.
 - The detail description is found in following papers
 - M. E. Dunn and N. M. Greene, "POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data," *NUREG/CR-ORNL/TM-2000/035* (2000).
 - A. M. Lane, R. G. Thomas, "R-Matrix Theory of Nuclear Reactions," *Rev. Mod. Phys.*, **30**, [2], pp.257-353 (1958).
 - N. M. Larson, "Updated Users' guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations," *ORNL/TM-9179/R8*, *ENDF-364/R2*, p.9 (2008).

Single-Level Breit-Wigner

Radiative capture cross section of SLBW

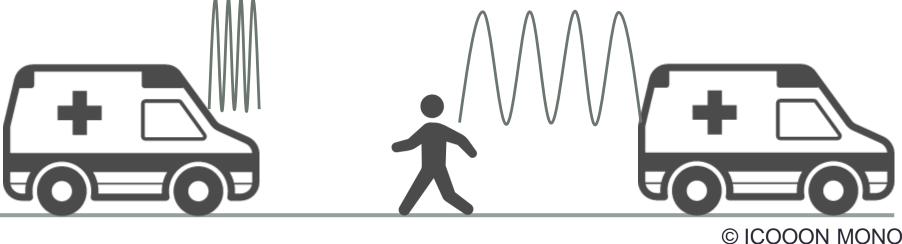
$$\sigma_{\gamma} = \frac{\pi}{k_1^2} \sum_j g_j \sum_{r=1}^{NR_j} \sqrt{\frac{E_1}{E_r}} \frac{\Gamma_{nr}(E_1)\Gamma_{\gamma r}}{(E_r - E_1)^2 + {\Gamma_r}^2/4}$$

Elastic scattering cross section of SLBW

•
$$\sigma_{sc} = \sigma_p + \frac{\pi}{k_1^2} \sum_j g_j \sum_{r=1}^{NR_j} \frac{\Gamma_{nr}(E_1)^2 - 2\Gamma_{nr}(E_1)\Gamma_r \sin^2(\phi_l) + 2\Gamma_{nr}(E_1)(E_r - E_1)\sin(2\phi_l)}{(E_r - E_1)^2 + {\Gamma_r}^2/4}$$

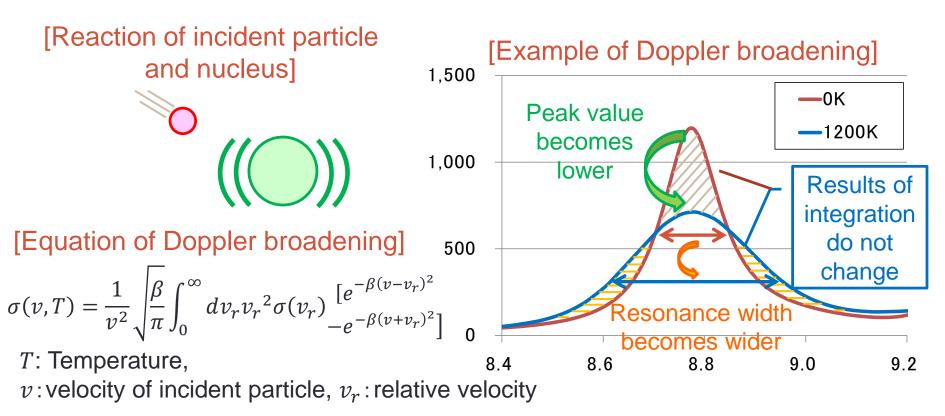
- Evaluated nuclear data file contains many parameters, *e.g.*, neutron width Γ_{nr} and Γ_r , spin g_j , resonance energy E_1 .
- Resonance reconstruction calculates cross section at incident energy E_r and linearizes cross section.

Doppler broadening


- Evaluated nuclear data file contains the data at 0 K.
- Doppler effect must be considered to calculate higher temperature cross section, *i.e.*, Doppler broadened cross section.
 - Nuclear data processing code should generate the temperature-dependent cross section data from the data at 0K.

Doppler effect

- Doppler effect is the change in frequency of a wave.
 - E.g., change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer.
- This effect must be considered in reaction of nucleus and incident particle.
 - Nucleus is at rest when temperature is 0 K.
 - Kinetic energy of nucleus is increased when temperature increases.
 - Relative energy between nucleus and incident particle is changed when temperature changes.


[Example of Doppler effect (pitch heard)]

Doppler broadening

- Most of evaluated nuclear data files contain cross sections at 0 K.
 - Nucleus vibration (Doppler broadening) should be considered to calculate cross section at T K.

Calculation of Doppler broadened XS

- Linearization is required for easy calculation of Doppler broadened XS.
 - If σ(v_r) is not a function of v_r, Doppler broadened XS is obtained using error function.
 - Error function is provided in many programming language as a service routine.

[Calculation formula of Doppler broadened XS]

$$\sigma(v,T) = \frac{1}{v^2} \sqrt{\frac{\beta}{\pi}} \int_0^\infty dv_r v_r^2 \sigma(v_r) \frac{[e^{-\beta(v-v_r)^2} - e^{-\beta(v+v_r)^2}]}{-e^{-\beta(v+v_r)^2}}$$
$$\sigma(v_r) = \frac{E - E_k}{E_{k+1} - E_k} \sigma_{k+1} + \frac{E_{k+1} - E}{E_{k+1} - E_k} \sigma_k$$
$$E_r = \frac{1}{2} m v_r^2$$
$$F_n(a) = \frac{1}{\sqrt{\pi}} \int_a^\infty z^n e^{-z^2} dz$$
$$= \frac{n-1}{2} F_{n-2}(a) + a^{n-1} F_1(a)$$

[Calculation of error function erf(a)]

$$erf(a) = \frac{1}{\sqrt{\pi}} \int_0^a e^{-z^2} dz$$

Gas production XS calculation

- Nuclear reactions sometimes yield gases.
 - p(proton: ¹H), D(deuteron: ²H), T(triton: ³H), ³He, α (⁴He)
- Gas generation affects the embrittlement of material and the internal gas pressure in a fuel pin.
 - ENDF-6 format prepares gas production reaction in MT=203-207.
 - MT=203:(z, Xp), MT=204:(z, Xd), MT=205:(z, Xt), MT=206(z, X³He), MT=207(z, Xα)
 - Nuclear data processing code calculates gas production XS even if gas production XS is not found in evaluated nuclear data file.
- Generated nuclide is also considered.
 - For example, ¹²C(n, n2α)⁴He reaction generates 3 alpha (⁴He) particles
 - 2α+4He=3α

Self-shielding effect in URR

- Resonance parameters in URR are averaged ones.
 - Nuclear data processing code cannot reconstruct resonance structure in URR.
 - Consideration of the self-shielding effect in URR is important for accurate neutronics calculations.
 - Self-shielding effect in RR is automatically considered in transport calculation codes using pointwise XS data.
- How to consider the self-shielding effect in URR?
 - NJOY prepares two methods.
 - Deterministic method : UNRESR module
 - Monte Carlo method (probability table method) : PURR module
 - We strongly recommend to use probability table method.
 - "For most purposes, UNRESR has been superseded by PURR."*)
 - "The PURR results may be more reliable at low σ_0 values than UNRESR results."*)
 - *) R. E. MacFarlane and A. C. Kahler, "Methods for Processing ENDF/B-VII with NJOY," Nuclear Data Sheets, **111**, pp.2739-2890 (2010).

Consideration of self-shielding effect using probability table (NJOY/PURR & FRENDY)

- Bondarenko-type self-shielded XS $\sigma_x(E)$ is used.
 - $\sigma_x(E)$ is obtained by probability table $P_i(E)$.

•
$$\sigma_{\chi}(E) = \frac{\sum_{i=1}^{bin} \frac{P_i(E)\sigma_{\chi,i}(E)}{\sigma_0 + \sigma_{t,i}(E)}}{\sum_{i=1}^{bin} \frac{P_i(E)}{\sigma_0 + \sigma_{t,i}(E)}}$$

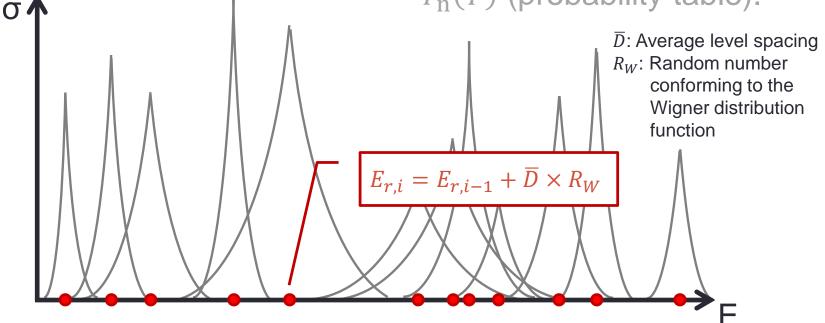
• *x*: reaction type (t, sc, f, γ) , σ_0 : back ground XS

• Monte Carlo calculation codes directly use $P_i(E)$.

[Example of probability table]

JAEA

	σ _{x,1}	<i>σ_{x,2}</i>	σ _{x,3}
	(10∼16 barn)	(16∼42 barn)	(42∼176 barn)
E=1.2~1.5keV	$P_1 = 0.56$	$P_2 = 0.36$	$P_3 = 0.08$

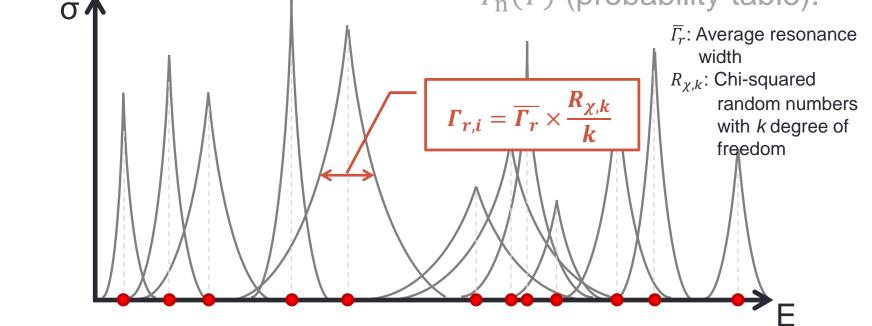

Generation of probability table (1/5)

- 1. Determination of resonance energy $E_{r,i}$ using random number
- 2. Determination of resonance width using random number
- 3. Calculation of XS and probability $P_n(T)$ of $\sigma_{n-1} \le \sigma_{t,j}(E_j, T) < \sigma_n$

4. Continuing generation of pseudo resonance structure

(Pseudo resonance structure is called as "ladder")

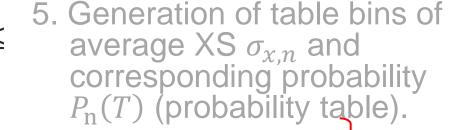
5. Generation of table bins of average XS $\sigma_{x,n}$ and corresponding probability $P_n(T)$ (probability table).

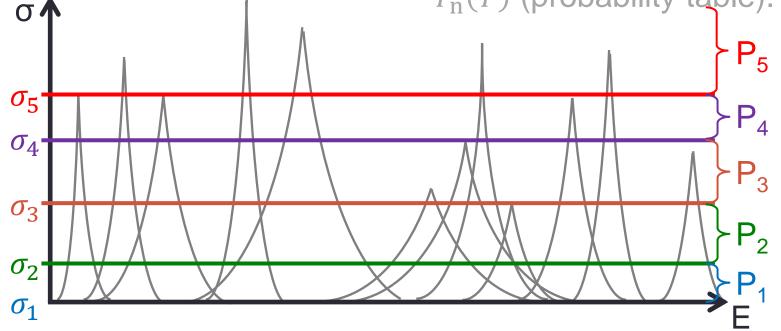


Generation of probability table (2/5)

- 1. Determination of resonance 4. Continuing generation of energy using random number
- **2.** Determination of resonance width $\Gamma_{r,i}$ using random number
- 3. Calculation of XS and probability $P_n(T)$ of $\sigma_{n-1} \leq$ $\sigma_{t,i}(E_i,T) < \sigma_n$

- pseudo resonance structure
- (Pseudo resonance structure is called as "ladder")
- 5. Generation of table bins of average XS $\sigma_{x,n}$ and corresponding probability $P_{\rm n}(T)$ (probability table).

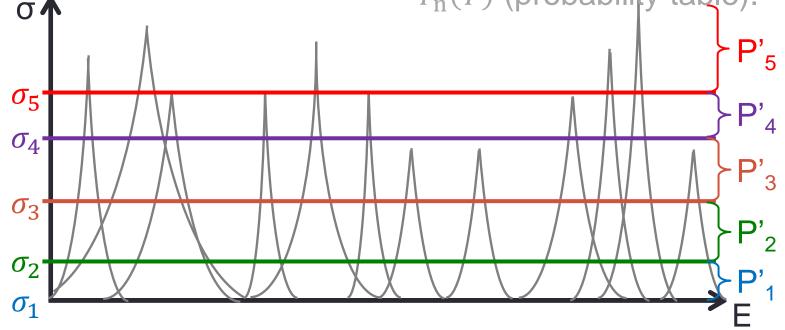



Generation of probability table (3/5)

- 1. Determination of resonance energy using random number
- 2. Determination of resonance width using random number

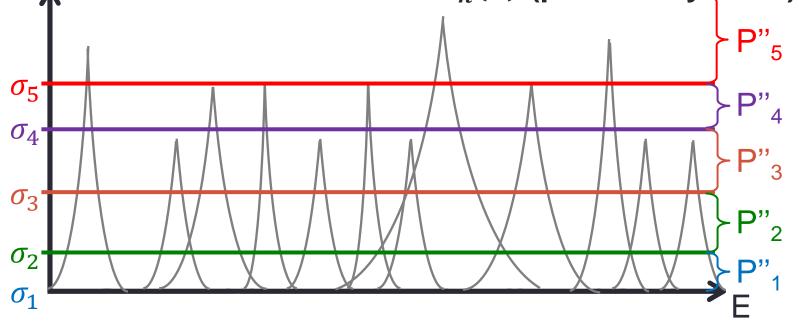
3. Calculation of XS and probability $P_n(T)$ of $\sigma_{n-1} \le \sigma_{t,j}(E_j, T) < \sigma_n$

- 4. Continuing generation of pseudo resonance structure (Pseudo resonance)
 - structure is called as "ladder")



Generation of probability table (4/5)

- 1. Determination of resonance energy using random number
- 2. Determination of resonance width using random number
- 3. Calculation of XS and probability $P_n(T)$ of $\sigma_{n-1} \le \sigma_{t,j}(E_j, T) < \sigma_n$
- 4. Continuing generation of pseudo resonance structure
- (Pseudo resonance structure is called as "ladder")


5. Generation of table bins of average XS $\sigma_{x,n}$ and corresponding probability $P_n(T)$ (probability table).

Generation of probability table (5/5)

- 1. Determination of resonance energy using random number
- 2. Determination of resonance width using random number
- 3. Calculation of XS and probability $P_n(T)$ of $\sigma_{n-1} \le \sigma_{t,j}(E_j, T) < \sigma_n$
- 4. Continuing generation of pseudo resonance structure (Pseudo resonance structure is called as "ladder")
- 5. Generation of table bins of average XS $\sigma_{x,n}$ and corresponding probability $P_n(T)$ (probability table).

JAEA

Calculation of Doppler broadened XS in URR

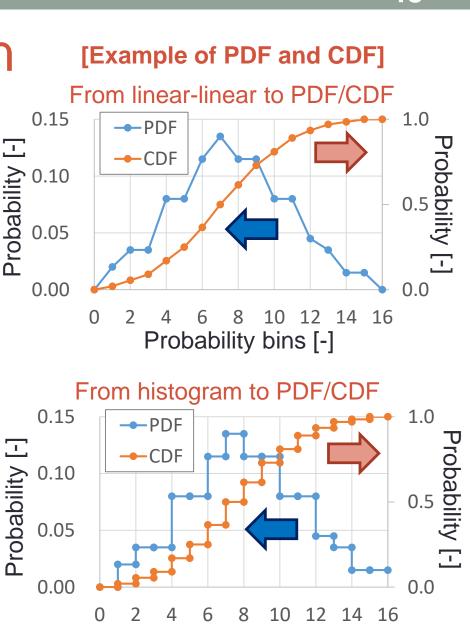
- Single-Level Breit-Wigner (SLBW) resonance formula is used in URR.
- Approximated Doppler broadened XS can be directly obtained using psi-chi method when SLBW is adopted.
 - This approximation method cannot correctly calculate XS at peak and bottom of resonance.
 - This approximation has no large impact on probability table generation.

Radiative capture XS

$$\sigma_{c}(E,T) \cong \frac{\sigma_{1}\Gamma_{\gamma r}}{\Gamma_{r}} \Psi(\zeta, x)$$

$$\psi(\zeta, x) = \frac{\zeta}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} e^{-\frac{\zeta^{2}}{4}(x-y)^{2}} dy$$

$$\chi(\zeta, x) = \frac{\zeta}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{y}{1+y^{2}} e^{-\frac{\zeta^{2}}{4}(x-y)^{2}} dy$$


$$\chi(\zeta, x) = \frac{\zeta}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1+y^{2}}{1+y^{2}} e^{-\frac{\zeta^{2}}{4}(x-y)^{2}} dy$$

$$+2\sigma_{1}k_{1}a_{c}\chi(\zeta, x) + \sigma_{p}$$

ACE file generation

- Continuous energy Monte Carlo calculation codes use cumulative probability distribution (CDF).
 - Angular and energy distributions are converted to cumulative probability distribution.
 - PDF: Probability Density
 Function
 - CDF : Cumulative
 Density Function

Probability bins [-]

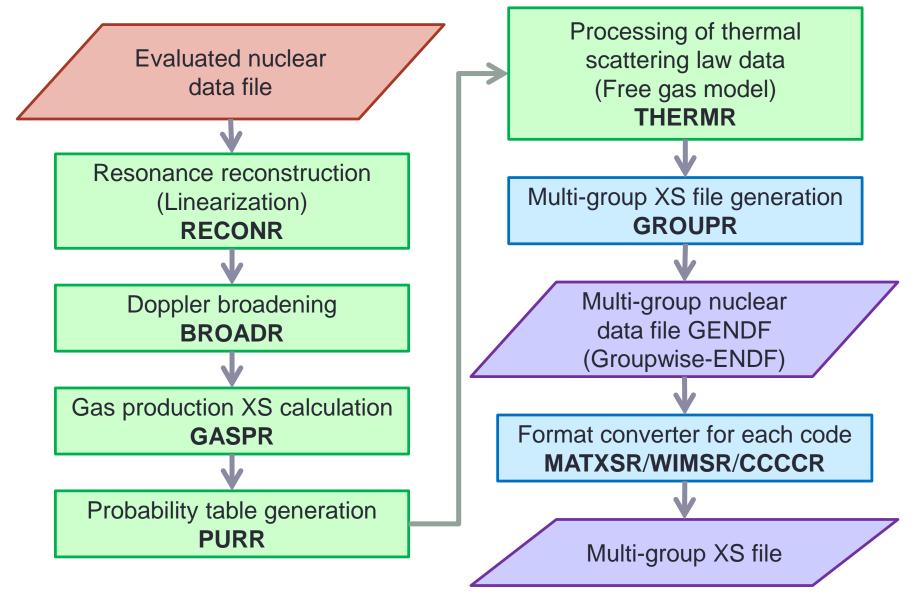
45

Multi-group XS calculation

• Multi-group XS $\sigma^i_{l,g}$ is obtained using continuous XS $\sigma^i(E)$ and weighting flux $\phi_l(E)$.

•
$$\sigma^{i}_{l,g} = \frac{\int_{E_{g}}^{E_{g-1}} \sigma^{i}(E)\phi_{l}(E)dE}{\int_{E_{g}}^{E_{g-1}} \phi_{l}(E)dE}, \sigma^{i}_{l,g\to g'} = \frac{\times \int_{E_{g}'}^{E_{g'-1}} \int_{0}^{\pi} f(E\to E',\mu)P_{l}(\mu)d\mu dE'}{\int_{E_{g}}^{E_{g-1}} \phi_{l}(E)dE}$$

F~ 1


• NJOY uses the following weighting flux $\phi_l(E)$ to consider self-shielding effect.

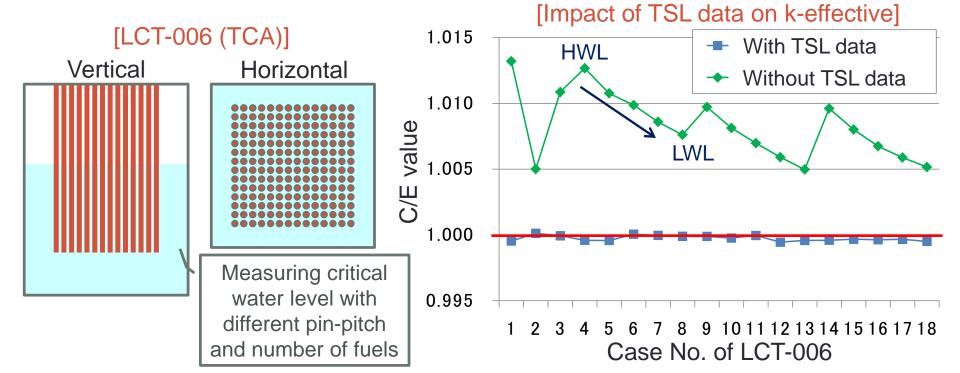
•
$$\phi_l^i(E) = \frac{C(E)}{\left[\sigma_t^i(E) + \sigma_0^i\right]^{l+1}}$$

• C(E) is set by user input, $\sigma_t^i(E)$ is total XS, σ_0^i is background XS.

Multi-group XS file generation using NJOY

Consideration of TSL data

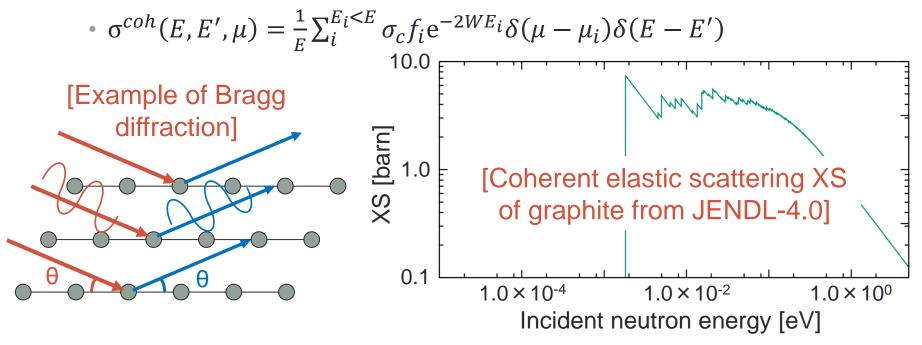
- Chemical state of material has large impact on thermal neutron scattering property.
 - Crystalline structure and chemical bounding of nuclide
 - H₂O, Polyethylene (CH₂), Graphite, Be, ZrH, ...
- Evaluated nuclear data file gives Thermal Scattering
 Law data to consider this thermal scattering.
 - Thermal scattering law data S(α, β) is given as a function of α and β.
 - TSL data is also called as "S(α , β)".


• $\alpha = (E' + E - 2\mu\sqrt{EE'})/A_0k_BT$: dimensionless momentum transfer

• $\beta = (E' - E)/k_BT$: dimensionless energy transfer

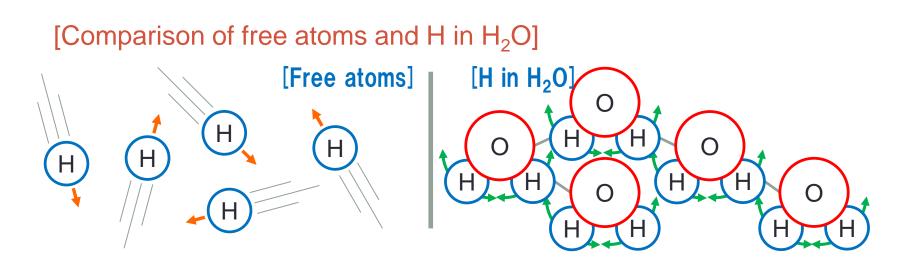
Impact of TSL data on k-effective

- Impact of TSL data on k-effective is evaluated.
 - Calculation geometry : LCT-006 (JAEA/TCA) from ICSBEP benchmark
 - Impart of TSL data on k-effective is 0.5-1.3%Δk
- TSL data is very important for thermal reactor.
 - Users have to use TSL data if TSL data is prepared in XS library.



Thermal scattering

- ENDF-6 format handles three types of thermal scattering in MF=7.
- MF=7/MT=2
 - Coherent elastic scattering for crystalline materials
 - Incoherent elastic scattering for partially ordered materials
- MF=7/MT=4
 - Incoherent inelastic scattering for non-crystalline materials
 - Represented by S(α, β)


Coherent elastic scattering

- Observed in crystalline materials such as graphite
 - Bragg diffraction
- Evaluated nuclear data file contains number of Bragg edges and its energy.
 - Nuclear data processing codes calculate coherent elastic scattering XS.

Incoherent inelastic scattering

- Observed in non-crystalline materials such as H₂O, ZrH, and BeO
 - Chemical binding effect of a molecule
 - Non-crystalline materials cannot move like a free atom.
- Thermal scattering law data is used to consider incoherent inelastic scattering.

Calculation of incoherent inelastic scattering XS

• Incoherent inelastic scattering XS is calculated using $S(\alpha, \beta, T)$

•
$$\frac{d^2\sigma}{d\Omega dE'}(E \to E', \mu, T) = \sum_n \frac{M_n \sigma_{bn}}{4\pi k_B T} \sqrt{\frac{E'}{E}} e^{-\frac{\beta}{2}} S_n(\alpha, \beta, T)$$

• μ is scattering cosine, M_n is number of atoms

S(α, β, T) is only available for given temperatures in TSL data

- ENDF-6 format gives interpolation law LI.
- Interpolated $S(\alpha, \beta, T)$ is not correct and many nuclear processing codes, *e.g.*, NJOY and FRENDY, **only process given temperature**.
 - Nuclear data processing code users have to check the given temperature.
 - Given temperature is written in comment line (MF=1/MT=451).

$S(\alpha, \beta)$ of free gas (free atom)

- Free gas scattering law is required to consider up scattering.
 - S(α , β) of free gas: $S(\alpha, \beta) = \frac{1}{\sqrt{4\pi\alpha}} \exp\left\{-\frac{\alpha^2 + \beta^2}{4\alpha}\right\}$
 - Evaluated nuclear data contains 0 K data.
 - Up scattering does not occur at 0 K.
- Continuous energy Monte Carlo codes treat free gas scattering law in their codes.
 - They do not need up scattering XS data in XS libraries.
 - Nuclear data processing codes do not have to process free gas scattering law.
- Multi-group calculation codes need incoherent inelastic scattering XS using free gas scattering law.
 - Nuclear data processing codes have to process free gas scattering law.

Open nuclear data processing code

- FRENDY (JAEA): <u>https://rpg.jaea.go.jp/main/en/program_frendy/</u>
 - C++

JAEA

- FRENDY Version 1 can generate ACE file.
- Development of multi-group XS file generation function is now under going.
- NJOY2016 (LANL): <u>https://github.com/njoy</u>
 - De facto standard code
 - NJOY2016: Fotran90 / NJOY21: C++
- PREPRO (IAEA): <u>https://www-nds.iaea.org/public/endf/prepro/</u>
 - FORTRAN 77
 - Widely used in the world.
- FUDGE (LLNL): <u>https://github.com/LLNL/fudge</u>
 - Python
 - FUDGE can also convert from ENDF-6 format to GNDS format
- AMPX-6 (ORNL)
 - Nuclear data processing system for SCALE
- GRUCON (Russia): <u>https://www-nds.iaea.org/grucon/</u>

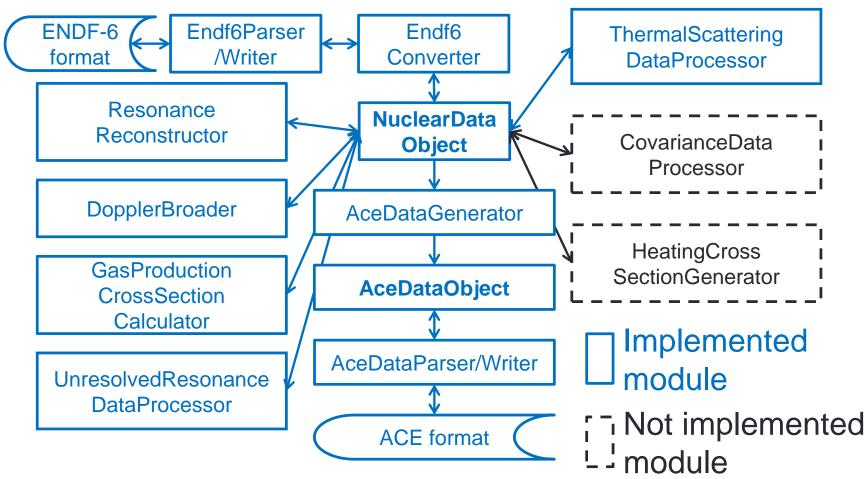
Characteristics of FRENDY

56

JAEA

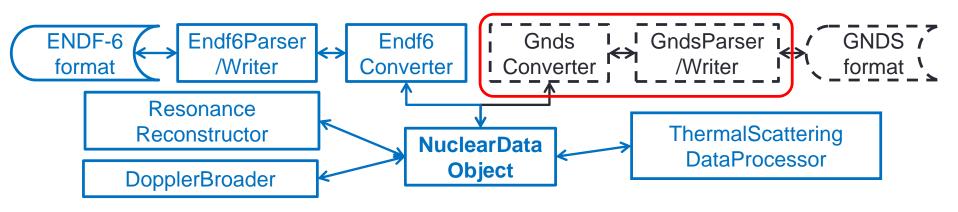
Development of nuclear data processing code FRENDY

- JAEA started developing a new nuclear data processing code FRENDY in 2013.
 - FRom Evaluated Nuclear Data librarY to any application
 - To process nuclear data library by JAEA's nuclear application code users with simple input file.
- FRENDY Version 1 was released in 2019.
 - FRENDY Ver. 1 only generates ACE files.
 - https://rpg.jaea.go.jp/main/en/program_frendy/


Features of FRENDY

- Utilization of modern programming techniques
 - C++, BoostTest library, Git
 - Improvement of quality and reliability
- Consideration of maintainability, modularity, and flexibility
 - Encapsulate all classes
 - Minimize the function of module
 - Maintain the independence of each module
- Processing methods of FRENDY are similar to NJOY.
- Ref. K. Tada, et. al., "Development and verification of a new nuclear data processing system FRENDY," *J. Nucl. Sci. Technol.*, **54** [7], pp.806-817 (2017). (http://www.tandfonline.com/doi/abs/10.1080/00223131.2017.1309306)

Structure of FRENDY


- Modularity is carefully considered.
 - Modules of FRENDY can be used other calculation codes by adding only a few lines.

Advantage for using the FRENDY's original nuclear data object

- FRENDY has original format of the nuclear data for efficient management.
 - NuclearDataObject class
- Minimizing the impact by the change of nuclear data format
 - Developer and users are not necessary to consider the nuclear data format.
 - Consideration of a new data format GNDS
 - GNDS format can be addressed if another set of parser, writer and converter classes are implemented.

Difference of FRENDY and NJOY

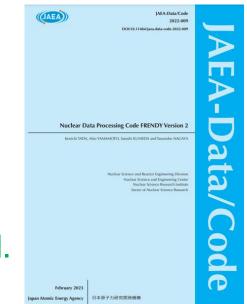
- FRENDY uses the same processing method adopted in NJOY.
- Several processing methods are improved.
 - The details of these differences are described in Sec. 9.2 of FRENDY manual (JAEA-Data/Code 2018-014).
 - Treatment of 0 eV XS to calculate Doppler broadened XS
 - NJOY uses 1/v law / FRENDY uses linear interpolation.
 - Number of energy grids to process TSL data
 - NJOY uses fixed energy grid points (118 from 1.0E-5 to 10 eV).
 - Determination of resonance width using random number in probability table generation
 - NJOY uses discrete random numbers to calculate chi-squared random numbers $R_{\chi,k}$.

Release of FRENDY Ver. 1

- FRENDY Ver.1 was released from our website.
 - <u>https://rpg.jaea.go.jp/main/en/program_frendy/</u>
 - Only generates ACE files.
 - Generation of multi-group cross section will be implemented soon.
 - Open-source software
 - 2-Clause BSD license
 - Presentations of FRENDY training course and exercise are also found in this website.
- Manual of FRENDY Ver. 1
 - JAEA-Data/Code 2018-014
 - https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2018-014.pdf

Development of FRENDY Ver. 2

- Many capabilities are prepared after FRENDY Ver. 1.
 - Neutron induced multi-group cross section generation
 - Perturbation of ACE file for uncertainty quantification
 - This function was implemented in FRENDY Ver.1.01.001.
 - Modification of evaluated nuclear data file
 - Uncertainty quantification for probability tables
 - Improvement of input checker to reduce input errors
- FRENDY version 2 was released including these functions in Jan. 2022.
 - https://rpg.jaea.go.jp/main/en/program_frendy/
- Manual of FRENDY Ver. 2
 - JAEA-Data/Code 2022-009
 - https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2022-009.pdf



Manual of FRENDY

- Latest manual of FRENDY
 - JAEA-Data/Code 2022-009
 - <u>https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-</u> 2022-009.pdf
 - There are many sample inputs in this manual.
- FRENDY package has simple input manual.
 - It also has many sample inputs.

Date of modification: 2024/Jan/1	8
Manual of FRENDY Version 2	
(Preliminary version)	

Input format of FRENDY

- FRENDY treats two types of the input formats.
 - FRENDY original input format
 - NJOY compatible
- Simple and easy input data
 - The simplest input: Nuclear data file name and processing mode are only required for the processing.
 - FRENDY has recommended parameters in the source code.
 - User can also change (override) parameters.

Input format of FRENDY and NJOY

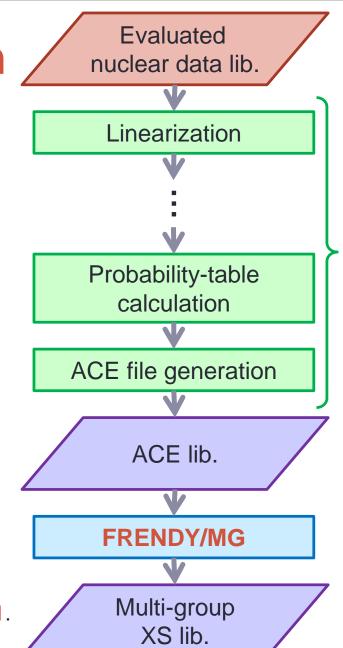
- Input parameters of FRENDY consist of "input data name" and "input data".
 - Comment line is similar to C/C++.
 - //~ or /* ~ */
- Input format of FRENDY is easy to understand.
 - This input format is suitable for beginners.

[Sample input of FRENDY]

ace_fast_mode // Processing mode nucl_file_name U235.dat ace_file_name U235.ace temp 296.0

[Sample input of NJOY]

	4	
reconr	/ command	
20 21	/input(tape20), output(tape21)	
'pendf tape for JENDL-4 U235' / identifier for PENDF		
9228	/ mat	
1.00e-03 0.00	/ err, temp	
0	/	
broadr	/ command	
20 21 22	/ endf, pendf(in), pendf(out)	
9228 1	/ mat, temp no	
1.00e-03 -5.0E+2	/ err, thnmax	
296.0	/ temp	
0	/	
gaspr	/ command	
20 22 23	/ endf, pendf(in), pendf(out)	
purr	/ command	
20 23 25	/ endf, pendf(in), pendf(out)	
9228 1 10 20 500	/ mat, temp no, sig no, bin no, lad no	
296.0	/ temp	
1E10 1E4 1E3 300 100 30	0 10 1.0 0.1 1.0E-5 / sig zero	
0	/	
acer	/ command	
20 25 0 30 31	/ nendf, npend, ngend, nace, ndir	
1 1 1 0.00	/ iopt(fast), iprint(max), itype, suffix	
'ACE file for JENDL-4 U235' / descriptive character		
9228 296.0	/ mat, temp	
1 1	/ newfor(yes), iopp(yes)	
1 1 1	/ thin(1), thin(2), thin(3)	
stop	/	



Characteristics of FRENDY Version 2

Multi-group XS generation

- FRENDY/MG^{*}) is used for a multi-group XS files.
 - FRENDY/MG generates multi-group XS files from ACE files.
 - FRENDY/MG can also generate a multi-group XS library from the existing ACE library.
- NJOY input are also available for multi-group XS file generation.
 - Input of GROUPR and MATXSR modules are available.
- *) A. Yamamoto, K. Tada, G. Chiba, T. Endo, "Multi-group neutron cross section generation capability for FRENDY nuclear data processing code," J. Nucl. Sci. Technol., 2021. https://doi.org/10.1080/00223131.2021.1921631

68

FRENDY Version

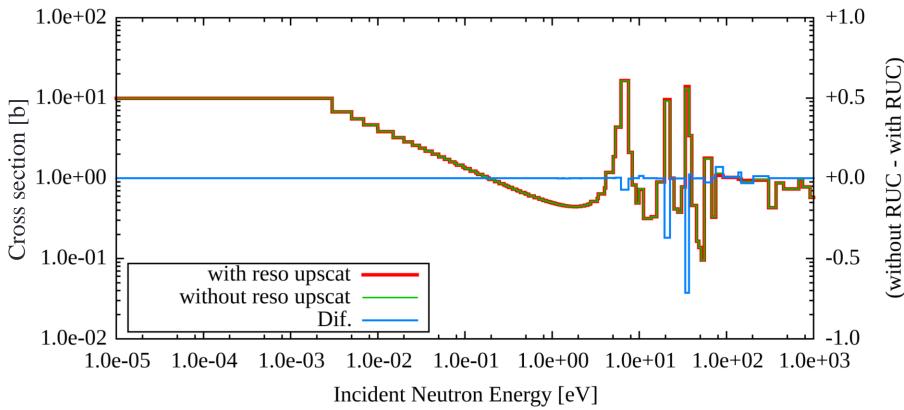
Major capabilities of FRENDY/MG

- Focus on neutron cross section generation.
 - It can treat fast continuous and thermal scattering law data.
- Output format of multi-group cross sections
 - GENDF and MATXS
- Angular/energy distributions
 - LAW=3, 4, 7, 9, 11, 44, 61 66 in ACE file
 - All nuclides in JENDL-4.0, ENDF/B-VII.1, B-VIII.0, JEFF-3.3, and TENDL-2019 are available.

New functions of FRENDY/MG

- Back-ground cross-section set can be automatically set with minimum number of background cross-sections^{*}).
- A compound of different isotope can be specified to explicitly consider the resonance interference effect.
 - For example, U-235, U-238, and O-16 in UO_2 .
- Any energy grid points can be used for ultra-fine group slowing down calculation.
- *) A. Yamamoto, T. Endo, K. Tada, "Adaptive setting of background cross sections for generation of effective multi-group cross sections in FRENDY nuclear data processing code," J. Nucl. Sci. Technol., 2021. <u>https://doi.org/10.1080/00223131.2021.1944930</u>

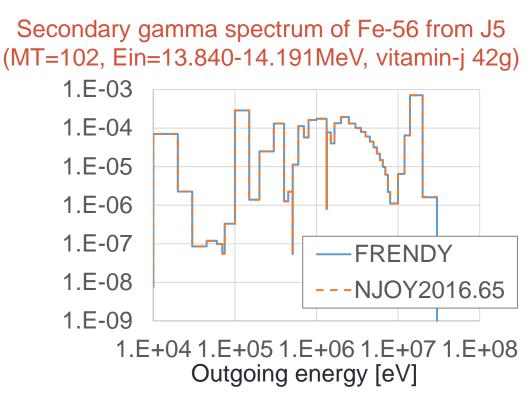
Resonance up-scattering correction (RUC)


- Calculation of elastic scattering cross section and scattering kernel using 0 K scattering cross section data generated by FRENDY.
 - Mixed nuclide is also available to explicitly consider the resonance interference effect.
 - For example, U-235 with RUC, U-238 with RUC, and O-16 without RUC in UO₂.
 - Sample input files to use RUC are found in the FRENDY manual.
- Neutronics calculation codes can consider RUC without any modification.

A. Yamamoto et al., "Implementation of Resonance Upscattering Treatment in FRENDY Nuclear Data Processing Systems," Nucl. Sci. Eng., 196, pp.1267-1279 (2022). https://www.tandfonline.com/doi/full/10.1080/00295639.2022.2087833

Comparison of XS with and without RUC

• Larger differences are found at the large resonances below 100 eV.



Multigroup generation of secondary gamma spectrum

- FRENDY results show good agreement with NJOY results.
 - All nuclides in JENDL-4.0, JENDL-5, ENDF/B-VII.1, ENDF/B-VIII.0, JEFF-3.3, and TENDL-2018 are available.

2D interpolation scheme of FRENDY

- ENDF-6 format recommends using unit base interpolation for 2D interpolation.
- FRENDY uses MCE for 2D interpolation.
 - Method of Corresponding Energy
 - MCE is identical to unit base interpolation when the number of divisions N is 1.

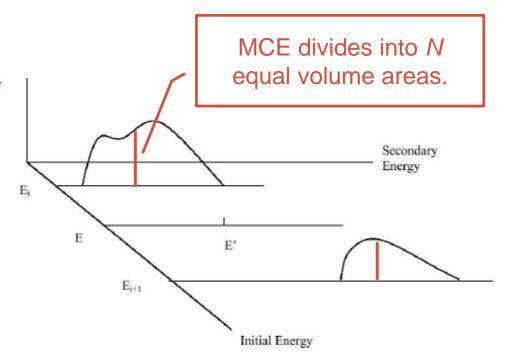
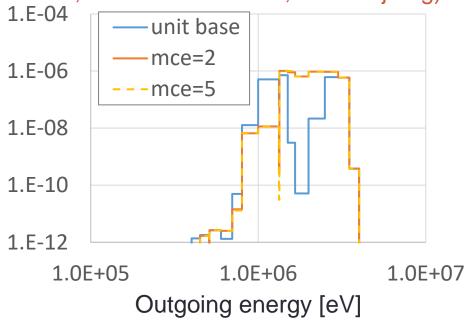



Figure 2: Interpolation between Two-Dimensional Panels.")

*) A. Trkov et al., "ENDF-6 Format Manual," BNL-203218-2018-INRE. (2018).

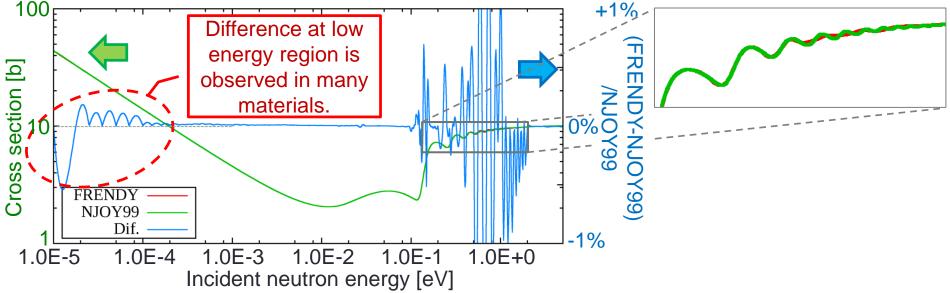
Difference of 2D interpolation scheme

- Difference was found in the secondary gamma spectrum between the unit base and MCE.
 - Close to threshold energy.
 - We think that MCE shows a reasonable distribution.
 - Default number of divisions in FRENDY is 2. (MT=22, Ein=12.5-12.8MeV, vitamin-j 42g)
 - Gamma spectrum does not change even if the number of divisions is increased.

Calculation of thermal neutron scattering cross section

- NJOY uses 118 fixed energy grid points.
 - These fixed energy grid points are insufficient for neutronics calculation.
- FRENDY used the incident energy grid points of the corresponding nuclide.
 - Very large processed data size
- Optimization of the number of incident energy grid points is required to reduce the data size.
 - Linearization function is newly added for thermal scattering law data processing^{*)}.
 - From FRENDY Ver. 2.02

^{*)} K. Tada, "Linearization of Thermal Neutron Scattering Cross Section to Optimize the Number of Energy Grid Points," Proc. ICNC2023, (2023).


Comparison of thermal neutron scattering cross section

77

- NJOY only calculates the incoherent inelastic XS on 118 energy grids.
 - Other energy grids are interpolated using the 5th order Lagrange interpolation.
- The fixed energy grid is not appropriate for a material of which the cross section is oscillated.
 - This difference may have impact on the TRIGA reactor.

JAEA

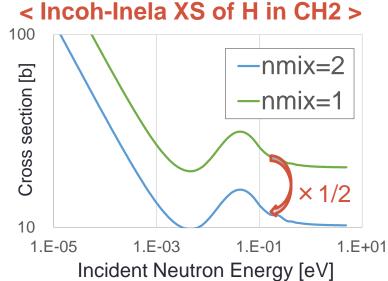
Impact of number of energy grids on k-eff

- Investigation of appropriate tolerance value for linearization.
 - Criticality benchmarks which contain H in ZrH were selected.
- Large differences between FRENDY and NJOY were found.
 - The tolerance value for linearization should be less than or equal to 0.05%.
 - FRENDY uses a default tolerance value of 0.02%.

<Relative difference of k-eff in each criticality benchmark>

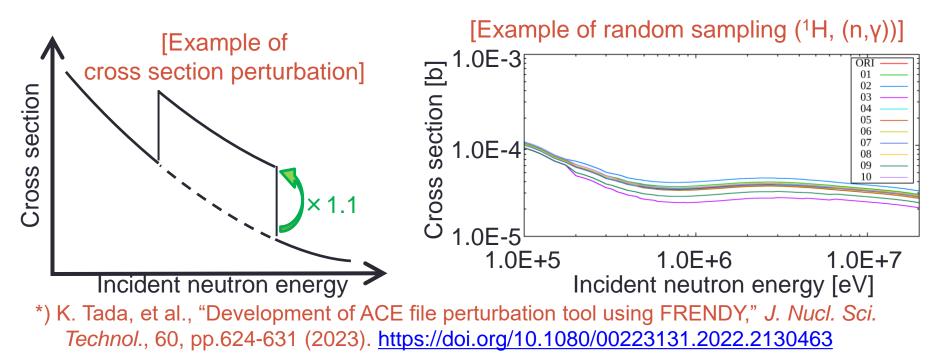
	Fixed 118	Old	Tolerance value		
	energy grid	FRENDY	0.10%	0.05%	0.02%
HCM-3-1	<u>-0.037%</u>	0.003%	<u>0.013%</u>	0.002%	0.002%
ICT-3-132	<u>0.026%</u>	-0.002%	<u>-0.009%</u>	-0.001%	-0.006%
ICT-3-133	<u>0.021%</u>	0.001%	<u>-0.012%</u>	-0.004%	-0.005%

Comparison of incident energy grid points


- The number of incident energy grid points is very small even if tolerance value is 0.02%.
 - Incident energy grid points and data size of the ACE file are reduced by more than 80% for many materials when the tolerance value is 0.02%.

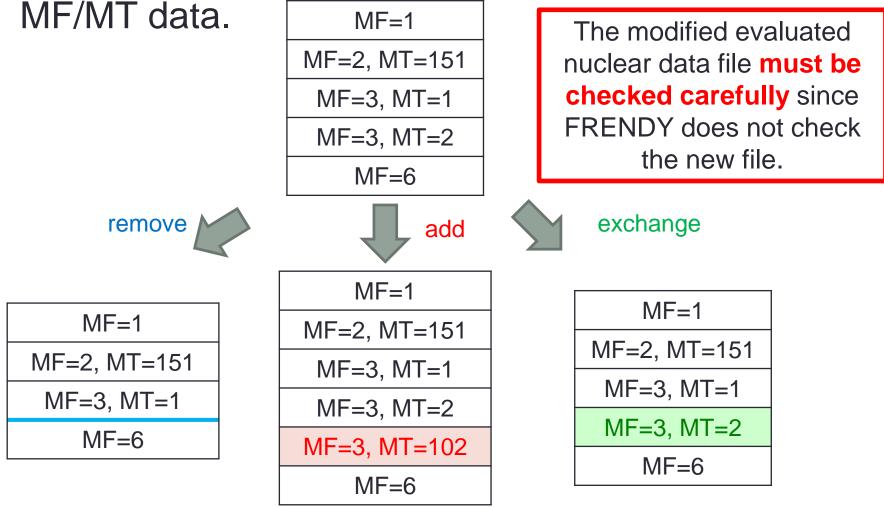
<Comparison of the number of incident neutron energies in each tolerance value>

	Old	Old Tolerance va		alue
	FRENDY	0.10%	0.05%	0.02%
Al-27	2,773	173	234	330
Fe-56	9,775	174	238	345
Be in BeO	10,272	186	261	387
$D in D_2O$	559	166	208	280
H in H ₂ O	500	157	194	274
H in ZrH	500	297	423	<u>653</u>
O in BeO	10,243	185	256	381
$O in H_2O$	512	152	176	225
O in UO_2	3,958	178	246	352
U in UO_2	4,626	170	230	326
Zr in ZrH	3,378	172	235	336

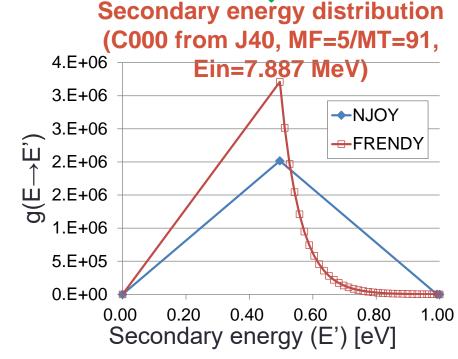

Input checker functions to reduce input errors

- FRENDY automatically checks input parameters and processing results.
 - FRENDY reads nuclear data files and sets recommended values.
 - Input parameters are compared to recommended values.
 - Processing results are also used to verify input parameters.
- These functions help many users to generate correct input file.
 - These functions are also available for NJOY input format.
 - FRENDY is also used as the input checker of NJOY.

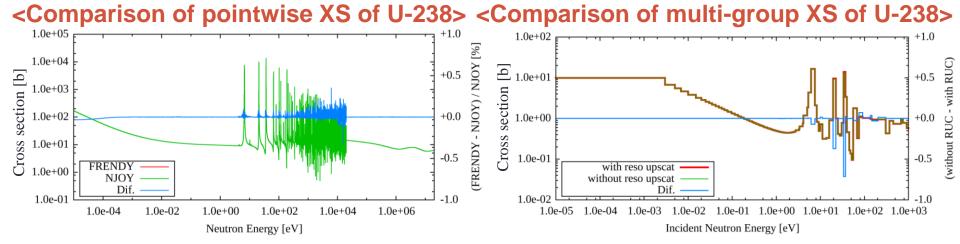
ACE file perturbation tool


- Implementation of a random sampling tool to perturb cross section and fission spectrum of ACE file^{*)}.
 - User sets reaction type, energy region, and amount of perturbation.
 - Cross section and fission spectrum are randomly perturbed using random sampling mode.

ENDF modification function


JAEA

• This function removes, adds, exchanges specified


Linearization function of TAB1 data

- NJOY uses the first interpolation scheme for multiple interpolation schemes in some MF data.
 - This process is not applicable when multiple interpolation schemes are used in the TAB1 data.
 - FRENDY linearizes TAB1 data to handle multiple interpolation schemes.
 - Differences were found between FRENDY and NJOY.
- Linearization function of TAB1 data was prepared as a tool of FRENDY.
 - Such interpolation problem is solved if the TAB1 data are linearized before the nuclear data processing.

XS output function

- It outputs X-Y data for gnuplot, Matplotlib, and Excel.
 - Cross section data and double differential cross section data from ENDF(PENDF), ACE, and GENDF.
 - Pointwise and multi-group data.
 - Multi-group cross section can be generated from pointwise data.
 - Multi-group cross section generation using the specified weighting function such as flat and 1/E flux.
 - From FRENDY Ver. 2.03.

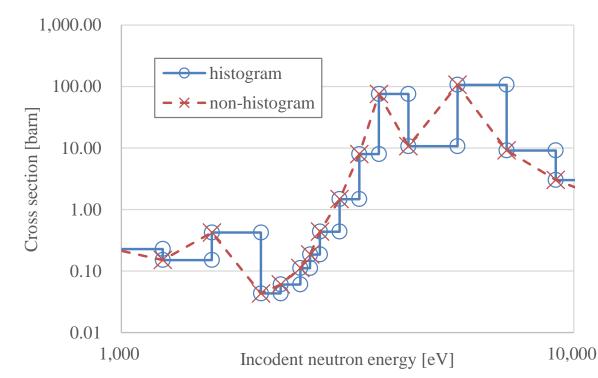
JAEA

Available format

• ENDF(PENDF), ACE, and GENDF format

- ENDF and ACE (fast and tsl)
 - It outputs 1-D data or comparison results (1-D data and relative difference)
 - It automatically processes the linearization and resonance reconstruction if the ENDF file does not linearized.
 - It automatically calculates the Doppler broadened cross section if the specified temperature is higher.
 - It generates multi-group cross section using specified weighting function.

• GENDF


- It outputs 1-D data.
- It outputs all Legendre order data.
- It outputs double differential cross section in the MF=5, 6, and 16.

Changing default values for output 1D data

- Tolerance value for resonance reconstruction, linearization, and Doppler broadening
 - Nuclear data processing: 0.1%
 - Output function: 1%
 - To reduce processing time and data size.
 - User can change tolerance value using "error" parameter.
- Maximum energy of Doppler broadening
 - Nuclear data processing: top of resolved resonance region
 - Output function: 1 MeV
- IWT=4 (fission+1/E+Maxwell) is not available for the weighting function.

Multi-group plot of FRENDY

- FRENDY has two plot mode (Histogram and Non-histogram)
 - Histogram outputs two energy grid points for each energy group.
 - Maximum and minimum energy grid of each energy group.
 - This is used for drawing graph on a scatter plot in Excel.
 - Non-histogram outputs minimum energy grid of each energy group.
 - This is used for drawing graph on histogram plot in GNUPLOT.

References

Nuclear data processing

- Nuclear data processing
 - D. E. Cullen, "4 Nuclear Data Preparation," Handbook of Nuclear Engineering, Springer (2010).
 - R. E. MacFarlane and A. C. Kahler, "Methods for Processing ENDF/B-VII with NJOY," Nuclear Data Sheets, **111**, pp.2739-2890 (2010).
- Resonance formulae
 - M. E. Dunn and N. M. Greene, "POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data," NUREG/CR-ORNL/TM-2000/035 (2000).
 - A. M. Lane, R. G. Thomas, "R-Matrix Theory of Nuclear Reactions," *Rev. Mod. Phys.*, **30**, [2], pp.257-353 (1958).
 - N. M. Larson, "Updated Users' guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations," ORNL/TM-9179/R8, ENDF-364/R2, p.9 (2008).

Nuclear data format

ENDF-6 format

- A. Trkov, et. al, "ENDF-6 Formats Manual," CSEWG Document ENDF-102, BNL-203218-2018-INRE (2018).
- "Introduction to ENDF format," LA-UR-98-1779 (1998).
 - <u>http://t2.lanl.gov/nis/endf/</u>
- GNDS
 - C. M. Mattoon, et.al, "Generalized Nuclear Data: a New Structure (with Supporting Infrastructure) for Handling Nuclear Data, Nuclear Data Sheets, **113**, pp.3145-3171 (2012).
 - GNDS&FUDGE
 - https://ndclx4.bnl.gov/gf/project/gnd/

NJOY

• NJOY99

- R. E. MacFarlane, "The NJOY Nuclear Data Processing System Version 91," LA-12740-M (1994).
- http://t2.lanl.gov/nis/codes/njoy99/
- NJOY2012
 - A. C. Kahler, "The NJOY Nuclear Data Processing System, Version 2012," LA-UR-12-27079 (2012).
 - http://t2.lanl.gov/nis/codes/NJOY12/
- NJOY2016 / NJOY21
 - A. C. Kahler, "The NJOY Nuclear Data Processing System, Version 2016," LA-UR-17-20093 (2016).
 - https://njoy.github.io/

Other processing code

FRENDY

JAEA

- K. Tada, et. al, "Development and verification of nuclear data processing code FRENDY version 2," *J. Nucl. Sci. Technol.* (2023).
- FUDGE (LLNL)
 - https://github.com/LLNL/fudge
- PREPRO (IAEA)
 - https://www-nds.iaea.org/public/endf/prepro/
- AMPX (ORNL)
 - D. Wiarda, "AMPX-6: A Modular Code System for Processing ENDF/B," ORNL/TM-2016/43 (2016).
- GRUCON (Russia)
 - https://www-nds.iaea.org/grucon/

Nuclear data utilization tool

- Evaluated Nuclear Data File (ENDF)
 - Plotting cross section data in each evaluated nuclear data library
 - https://www-nds.iaea.org/exfor/endf.htm
- Sigma
 - Plotting cross section data in each evaluated nuclear data library
 - http://www.nndc.bnl.gov/sigma/