

Development of FRENDY Version 2

Kenichi TADA (JAEA),
Akio YAMAMOTO, Tomohiro ENDO (Nagoya Uni.),
Go CHIBA (Hokkaido Uni.),
Michitaka ONO, Masayuki TOJO (GNF-J)

Overview of FRENDY

- JAEA started developing a new nuclear data processing system FRENDY in 2013.
 - FRom Evaluated Nuclear Data librarY to any application
 - To process nuclear data library by JAEA's nuclear application code users with simple input file.
- FRENDY Version 1 was released in 2019.
 - FRENDY Ver. 1 only generates ACE files.
 - https://rpg.jaea.go.jp/main/en/program_frendy/
- FRENDY Version 2 will be released in Mar. 2022.
 - FRENDY Ver. 2 generates multi-group XS file.

Features of FRENDY

- Utilization of modern programming techniques
 - C++, BoostTest library, Git
 - Improvement of quality and reliability
- Consideration of maintainability, modularity, and flexibility
 - Encapsulate all classes
 - Minimize the function of module
 - Maintain the independence of each module
- Simple input format
 - Processing mode and nuclear file name is required at minimum.
 - NJOY input format is also available.

Ref. K. Tada, et. al., "Development and verification of a new nuclear data processing system FRENDY," *J. Nucl. Sci. Technol.*, **54** [7], pp.806-817 (2017). (http://www.tandfonline.com/doi/abs/10.1080/00223131.2017.1309306)

Input format of FRENDY

- FRENDY treats two types of the input formats.
 - FRENDY original input format
 - NJOY compatible
- Simple and easy input data
 - The simplest input: Nuclear data file name and processing mode are only required for the processing.
 - FRENDY has recommended parameters in the source code.
 - User can also change (override) parameters.

Input format of FRENDY and NJOY

- Input parameters of FRENDY consist of "input data name" and "input data".
 - Comment line is similar to C/C++.
 - //~ or /* ~ */
- Input format of FRENDY is easy to understand.
 - This input format is suitable for beginners.

[Sample input of FRENDY]

```
ace_fast_mode // Processing mode
nucl_file_name U235.dat
ace_file_name U235.ace
temp 296.0
```

[Sample input of NJOY]

```
reconr
                             / command
20 21
                             /input(tape20), output(tape21)
'PENDF file of U235'
                             / identifier for PENDF
9228
                             / mat
1.00e-03 0.00
                             / err, temp
                             / command
broadr
20 21 22
                             / endf, pendf(in), pendf(out)
9228 1
                             / mat, temp no
1.00e-03 -5.0E+2
                             / err, thnmax
296.0
                             /temp
                             / command
gaspr
20 22 23
                             / endf, pendf(in), pendf(out)
                             / command
purr
20 23 25
                             / endf, pendf(in), pendf(out)
9228 1 10 20 100
                             / mat, temp no, sig no, bin no, lad no
296.0
                             /temp
1E10 1E4 1E3 300 100 30 10 1.0 0.1 1.0E-5 / sig zero
0
                             / command
acer
20 25 0 30 31
                             / nendf, npend, ngend, nace, ndir
1 1 1 0.30
                             /iopt(fast), iprint(max), itype, suffix
'ACE file of U235'
                             / descriptive character
9228 296.0
                             / mat, temp
                             / newfor(yes)
                             / acer end
stop
```


Release of FRENDY Ver. 1

- FRENDY Ver.1 was released from our website.
 - https://rpg.jaea.go.jp/main/en/program_frendy/
 - Only generates ACE files.
 - Generation of multi-group cross section will be implemented soon.
 - Open-source software
 - 2-Clause BSD license
 - Presentations of FRENDY training course and exercise are also found in this website.
- Manual of FRENDY Ver. 1
 - JAEA-Data/Code 2018-014
 - https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2018-014.pdf

Development of FRENDY Ver. 2

- Many capabilities are prepared after FRENDY Ver. 1.
 - Neutron induced multi-group cross section generation
 - Perturbation of ACE file for uncertainty quantification
 - This function was implemented in FRENDY Ver.1.01.001.
 - Modification of evaluated nuclear data file
 - Uncertainty quantification for probability tables
 - Improvement of input checker to reduce input errors
- FRENDY version 2 will be released including these functions in Mar. 2022.

Multi-group XS generation

- FRENDY/MG*) is used for a multi-group XS files.
 - FRENDY/MG generates multi-group XS files from ACE files.
 - FRENDY/MG can also generate a multi-group XS library from the existing ACE library.
- NJOY input are also available for multi-group XS file generation.
 - Input of GROUPR and MATXSR modules are available.
- *) A. Yamamoto, K. Tada, G. Chiba, T. Endo, "Multi-group neutron cross section generation capability for FRENDY nuclear data processing code," J. Nucl. Sci. Technol., 2021. https://doi.org/10.1080/00223131.2021.1921631

Major capabilities of FRENDY/MG

- Focus on neutron cross section generation.
 - It can treat fast continuous and thermal scattering law data.
- Output format of multi-group cross sections
 - GENDF and MATXS
- Angular/energy distributions
 - LAW=3, 4, 7, 9, 11, 44, 61 66 in ACE file
 - All nuclides in JENDL-4.0, ENDF/B-VII.1, B-VIII.0, JEFF-3.3, and TENDL-2019 are available.
- Scattering matrices
 - It can treat all reactions including anisotropic scattering.
 - $S(\alpha, \beta)$: free gas model, incoherent inelastic, incoherent elastic, coherent elastic

New functions of FRENDY/MG

- Back-ground cross-section set can be automatically set with minimum number of background crosssections*).
- A compound of different isotope can be specified to explicitly consider the resonance interference effect.
 - For example, U-235, U-238, and O-16 in UO₂.
- Current (P₁ flux) weighted total cross-section can be calculated.
- Any energy grid points can be used for ultra-fine group slowing down calculation.
- *) A. Yamamoto, T. Endo, K. Tada, "Adaptive setting of background cross sections for generation of effective multi-group cross sections in FRENDY nuclear data processing code," J. Nucl. Sci. Technol., 2021. https://doi.org/10.1080/00223131.2021.1944930

Verification of FRENDY/MG

- Comparison of all processing results between FRENDY/MG and NJOY
 - All nuclides in JENDL-4.0, ENDF/B-VII.1, B-VIII.0, and JEFF-3.3
 - The processing results shows good agreement.
- Comparison of neutronics calculations
 - PWR pin-cell (5 wt% UO₂, 600 K)
 - MOC (GENESIS code), 172 gr.
 - $S(\alpha, \beta)$:free gas
- K-effective
 - NJOY : 1.4089250
 - FRENDY/MG: 1.4089277

[Comparison of neutron spectrum]

ACE file perturbation tool

- Implementation of a sampling tool to perturb cross section, number of neutrons per fission, and fission spectrum of ACE file*).
 - Reaction type, energy region, and amount of perturbation are required as input parameters.
- This tool is available from FRENDY Ver. 1.01.001.

*) R. Kondo, et al., "Implementation of random sampling for ACE-format cross sections using FRENDY and application to uncertainty reduction," *Proc. M&C2019*, Aug. 25-29 (2019).

ENDF modification function

This function removes, adds, exchanges specified

MF/MT data.

MF=1				
MF=2, MT=151				
MF=3, MT=1				
MF=3, MT=2				
MF=6				

The modified evaluated nuclear data file must be checked carefully since FRENDY does not check the new file.

exchange

MF=1
MF=2, MT=151
MF=3, MT=1
MF=6

MF=1
MF=2, MT=151
MF=3, MT=1
MF=3, MT=2
MF=3, MT=102
MF=6

MF=1
MF=2, MT=151
MF=3, MT=1
MF=3, MT=2
MF=6

Conclusions

- About FRENDY
 - FRENDY Ver. 1 was released in 2019 as an opensource software.
 - Utilization of modern programming techniques
 - Consideration of maintainability, modularity, and flexibility
 - Simple input format
- New capabilities in FRENDY Ver. 2
 - Neutron induced multi-group cross section generation
 - Perturbation of ACE file for uncertainty quantification
 - Modification of evaluated nuclear data file
- FRENDY Ver. 2 will be released in Mar. 2022.

Perturbation of ACE file

- Perturbation tool decreases or increases XS or number of neutron per fission (v) or fission spectrum (χ).
 - XS, v or χ is multiplied by perturbation factor f within arbitrary energy range.
- This tools can be adopted to two analyses.
 - Sensitivity analysis with direct perturbation method
 - Uncertainty analysis with random sampling method

Relations of each reaction type

Example of fission XS perturbation

Perturbed fission XS (MT=18): $\sigma_{18}' = \mathbf{f} \times \sigma_{18}$ (Perturabtion factor: \mathbf{f})

MT18 contains MT=19-21 and 38. MT=19-21 and 38 are also perturbed.

$$\sigma_{19}' = \mathbf{f} \times \sigma_{19}, \ \sigma_{20}' = \mathbf{f} \times \sigma_{20}, \ \sigma_{21}' = \mathbf{f} \times \sigma_{21}, \ \sigma_{38}' = \mathbf{f} \times \sigma_{38}$$

MT=1, 3, and 27 contain MT=18. XS of MT=1, 3, and 27 are modified.

$$\Delta \sigma_{18} = \sigma_{18}' - \sigma_{18}$$

$$\sigma_{1}' = \sigma_{1} + \Delta \sigma_{18}, \ \sigma_{3}' = \sigma_{3} + \Delta \sigma_{18}$$

$$\sigma_{27}' = \sigma_{27} + \Delta \sigma_{18}$$

Random sampling

- User must prepare covariance matrix.
 - We are now developing converter from GENDF file of NJOY/ERROR to input of random sampling tool.
- Generation of perturbation factors using random sampling method
 - See "/frendy_20yymmdd/tools/make_perturbation_factor/sample"

Uncertainty quantification using random

sampling method [1]

Godiva (HMF-001)

Geom etry	Sphere Radius: 8.7 cm
Composition	U-235: 93.71 wt.% U-238: 5.27 wt.% U-234: 1.02 wt.%
$k_{ m eff}$	1.000 ± 0.001

- ♦ MCNP6.2
- Number of perturbed ACE file: 100
- Covariance data: 56groupcov7.1 (from SCALE6.2.3)
- MT=2,4,16,18,102,452, and 1018
 (MT=452: v, MT=1018: χ)

Godiva [2]

[1] R. Kondo, et al., "Implementation of random sampling for ACE-format cross sections using FRENDY and application to uncertainty reduction," Proc. M&C2019, Aug. 25-29, Portland, USA (2019). [2] ICSBEP NEA/NSC/DOC(95)03, Organization for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA) (September 2016).

Calculation results (k-effective uncertainty)

 $k_{\rm eff}$ -uncertainty due to all nuclides and reactions $\Delta k/k$ [%]

Sensitivity analysis (SA)	Random sampling method using	
of MCNP6.2	perturbation tool	
1.11	1.12 [0.98 – 1.24]	

Comparison of $k_{\rm eff}$ -uncertainty due to individual nuclide and reaction $\Delta k/k$ [%]

		SA (TSUNAMI-1D)	SA (MCNP6.2)	RS
U-235	(n,γ)	0.880	0.880	0.833
U-235	(n,n')	0.615	0.617	0.664
U-235	Elastic	0.295	0.295	0.305
U-235	Fission	0.269	0.269	0.329
U-235	Fission spectrum	0.253	0.261	0.260
U-234	Fission	0.118	0.118	0.130
U-235	$ u_{total} $	0.085	0.085	0.093