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KEY ACRONYMS 

MOC : Method of Characteristics 
CMR : Coarse Mesh Rebalance 
GCMR : Generalized Coarse Mesh Rebalance 
CMFD : Coarse Mesh Finite Difference 
p-CMFD : Partial current-based Coarse Mesh Finite Difference
p-IMFD : Partial current-based Intermediate Mesh Finite Difference
PCDF : Partial Current Discontinuity Factor
TL(N)/p-CMFD : Two-Level p-CMFD with N global/local iterations
PI : Power Iteration
G-S : Gauss-Seidel
WS : Wielandt Shift
BiCGSTAB : Bi-Conjugate Gradient Stabilized
JFNK : Jacobian-Free Newton Krylov

INTRODUCTION 

Due to the structural design characteristics in the current generation of nuclear reactor cores, the 
neutron transport theory methods are now called for in the neutronics design and analysis [1]. In 
typical reactor types such as the thermal and fast reactors, the 2D (method of characteristics)/1D 
(discrete ordinates method) fusion method [2] is a novel approach and getting increasing attention 
[3,4]. Still, the 2D method of characteristics calculation takes most of the computing time and thus 
requires good acceleration schemes [1]. 

The coarse mesh based acceleration methods [1–11] in neutron transport calculation are widely 
used, because they are easily applied to the original transport calculation with various geometries. 
However, they exhibit slow convergence or divergent behavior (in some of the methods) for 
optically thick coarse mesh cells. This drawback limits the size of coarse mesh cells, incurring 
significant computational burden per iteration. It is also very important to use converging schemes 
in the coupling of the neutronics code with the thermal-hydraulics code for feedback [12]. 
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The present article revisits the partial current-based coarse mesh finite difference (p-CMFD) 
method [7–10] that was developed at KAIST, and that is unconditionally stable and more stable 
than other coarse mesh based acceleration methods. A recent extension with a two-level (two-grid) 
convergence speedup scheme [13–16] was made by using the Krylov subspace method. Numerical 
results of its application to the standard OECD benchmark problem and an enlarged problem show 
that the two-level scheme wrapped around by the Krylov subspace enhances the convergence rate 
of p-CMFD significantly, especially for optically thick coarse mesh cells (of assembly size). 

COARSE MESH BASED ACCELERATION METHODS AND LIMITATIONS 

Coarse mesh based acceleration methods usually consist of two parts: a high-order calculation and 
a low-order calculation. The high-order calculation employs transport methods (usually based on 
the discrete ordinates method or the method of characteristics in multigroup transport equations) 
with fixed fission source. The low-order calculation uses the balance equation, in which the high-
order calculation provides parameters over each coarse mesh cell. The low-order calculation gives 
the multiplication factor (for the whole reactor) and the coarse mesh cell averaged scalar fluxes. 
The coarse mesh cell averaged scalar fluxes are then “modulated” or prolongated to be used in the 
fission source of the high-order equation for the next iteration. 

To study the efficiency of an acceleration method, Fourier convergence analysis was performed 
on coarse mesh rebalance (CMR) [5,10], coarse mesh finite difference (CMFD) [10], partial 
current-based CMFD (p-CMFD) [7–10, 13], and generalized coarse mesh rebalance (GCMR) [11]. 
The results show that p-CMFD is always stable and more stable than the other methods. CMR 
shows divergent behavior for optically thin coarse mesh cells. CMFD, GCMR, and p-CMFD are 
very efficient for optically thin coarse mesh cells but not efficient for optically thick coarse mesh 
cells; See Fig. 1 (CMFD even diverges for optically thick coarse mesh cells, if D   is used from the 
standard diffusion theory ( D = 1/3 t )). Note that a recent work on CMFD with linearly 
interpolating prolongation lp-CMFD [17] stabilizes this divergence). 

Fig. 1. Results of Fourier stability analysis of CMR, CMFD, and p-CMFD with SC and S16 for 
the eigenvalue problem (from Ref. 13). 
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Ref. 18 adjusted (optimized) the diffusion coefficient in CMFD to improve the convergence rate. 
The diffusion coefficient in p-CMFD can be also adjusted to optimize the spectral radius. Figure 
2 shows the results in comparison. Even with the optimized D , CMFD and p-CMFD show slow 
convergence in optically thick coarse mesh cells. This is a common property for all coarse mesh 
based acceleration methods; see Ref. 18 for CMFD, Ref. 11 for GCMR, Refs. 10 and 13 for p-
CMFD, and Ref. 17 for lp-CMFD. Therefore, the need arises to improve convergence for thick 
coarse mesh cells. 

Fig. 2. Spectral radii of the D  optimized CMFD and p-CMFD. (See additional results 
in Ref. 13.) 

TWO-LEVEL p-CMFD ACCELERATION 

W-Cycle Scheme

The p-CMFD acceleration is a modification of the CMFD acceleration, in that p-CMFD is based 
on the use of partial currents (instead of net currents used in CMFD), resulting in: 

i) p-CMFD is unconditionally stable,
ii) p-CMFD provides additional information, that is, transport partial currents on the
interface of two coarse mesh cells, and thus,
iii) the incoming partial current allows a fixed-source problem formulation for a coarse
mesh cell, whose solution provides in turn improved flux distribution and outgoing partial
current (to the neighboring coarse mesh cell).

Note that CMFD [6] uses one correction coefficient to preserve the surface net current. On the 
other hand, p-CMFD uses two correction coefficients to preserve the two surface partial currents, 
respectively (The surface net current is automatically preserved by the two surface partial currents). 
In p-CMFD, there is little incentive to deal with the optimized D  (the improvement is only 
marginal in thin coarse mesh cells, where it is already very fast), instead we focus on thick coarse 
mesh cells, utilizing transport partial currents (see Fig. 2). This section describes a two-level spatial 
coarse grid p-CMFD technique to speedup p-CMFD acceleration, particularly in optically thick 
coarse mesh cells. To reduce the spectral radius further, we also introduce a global/local iterative 
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procedure to the low-level calculation in the two-level p-CMFD, as shown in the multi-grid 
literature notation in Fig. 3 (W-cycle). In Fig. 3, a quarter pin forms an intermediate-mesh cell in 
p-IMFD and each assembly forms a coarse-mesh cell in p-CMFD. Note that the p-IMFD rebalance 
calculations are used in restriction and prolongation for the scalar flux and partial currents.

Fig. 3. Two-grid representation of the p-CMFD computational flow for N = 2 in W-cycle. (*with 
updated transport incoming partial currents) 

Figure 4 is the convergence result of global/local iterations in the two-level p-CMFD acceleration 
for a 1D version OECD/NEA benchmark problem. As the number of global/local iterations 
increases (N goes large), the spectral radius for optically thick coarse mesh cells reduces drastically, 
approaching that of the fine mesh limit. 

Fig. 4. Spectral radius of global/local iteration in two-level p-CMFD acceleration (TL(N)/p-
CMFD: two-level p-CMFD with N global/local iterations). 
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Krylov Solution Algorithms 

In the W-cycle scheme in Fig. 3, Restriction I results in p-IMFD of intermediate-mesh cells and 
leads to the form, 

Aф = b, (1) 

that is a very large problem. It is then followed by the p-CMFD eigenvalue problem in coarse-
mesh cells of the form through Restriction II, 

Mф = 1/keff Fф.                                            (2) 

They are both whole-core problems. Eq. (1) is solved by the BiCGSTAB algorithm [19] and Eq. 
(2) by the Jacobian-Free Newton-Krylov (JFNK) algorithm [20]. In Eq. (2), ф and keff are
considered as unknowns simultaneously, rendering them as roots of a nonlinear equation system.
They are compared to the traditional methods of Gauss-Seidel (G-S) and power iteration (PI),
respectively. The Wielandt shift (WS) acceleration of power iteration (PI) is to be avoided, because
it may render the resulting matrix near singular.

NUMERICAL RESULTS 

3 x 3 Problem 

The two-level p-CMFD is tested on a two-dimensional problem with seven-group cross section 
data that are specified in the OECD/NEA C5G7 benchmark report [21], and is shown in Figure 5. 

Fig. 5. Geometry of 2D C5G7 benchmark problem. 

The computational conditions are as follows: The method of characteristics (MOC) is used, with 
40 mesh cells (5 ring divisions and 8 azimuthal sector divisions) per fuel pin cell and 64 mesh cells 
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(8 by 8 rectangular mesh cells) per reflector (pseudo) pin cell. An intermediate-mesh cell is a 
quarter of a fuel pin or a reflector pin. Table I shows the various results in comparison. Note that 
the number of transport sweeps (that is most time-consuming among the various phases of the 
computation) reduces significantly from No Acceleration to p-CMFD, and more significantly to 
TL(N)/p-CMFD, as N increases. This effect outweighs well enough the increase in the number of 
p-CMFD power (or JFNK) iterations.

Table Ⅰ. Results of 2D C5G7 (3 by 3) Benchmark Problem 

a*: Gauss-Seidel +Power Iteration, b*: BiCGSTAB +Power Iteration, c*: BiCGSTAB +JFNK 
†: a single thread of a CPU (Intel i7-7700K) 

5 x 5 Problem 

Additional results on an enlarged OECD/NEA C5G7 benchmark problem [22] are available and 
included below in Fig. 6 and Table II. As expected, the speedup becomes larger as the problem 
becomes larger. 

Methods No Acc. p-CMFD TL(1)/p-CMFD TL(4)/p-CMFD 
a* a* a* b* c* a* b* c* 

keff 1.18658 1.18658 1.18658 1.18658 1.18658 1.18658 1.18658 1.18658 
Number of 

transport sweep 
iterations 

1017 473 28 28 27 18 18 18 

Number of p-
CMFD Power 

 (or JFNK) 
Iterations 

0 4316 436 436 217 723 723 386 

Transport 
sweep 

calculation time 
(sec)† 

3148.618 1468.528 87.509 86.188 82.766 55.467 56.747 56.993 

Whole-core p-
IMFD time (sec) 0 0 5.311 3.034 2.06 2.8 1.859 1.376 

Local p-IMFD 
time (sec) 0 0 4.558 2.834 2.162 8.819 6.602 4.859 

Whole-core p-
CMFD time (sec) 0 15.802 0.937 0.925 0.944 2.368 2.379 2.581 

Total calculation 
time (sec) 3149.01 1484.67 98.412 93.081 88.017 69.552 67.687 65.9 

Speedup 1 2.12 32.00 33.83 35.78 45.28 46.52 47.78 
Percentage of 

transport sweep 
time in total 

calculation time 

99.99 98.91 88.92 92.59 94.03 79.75 83.84 86.48 
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Fig. 6. Geometry of enlarged 2D C5G7 benchmark problem. 

Table Ⅱ. Results of Enlarged 2D C5G7 (5 by 5) Benchmark Problem 

a*: Gauss-Seidel +Power Iteration, b*: BiCGSTAB +Power Iteration, c*: BiCGSTAB +JFNK 
†: a single thread of a CPU (Intel i7-7700K) 

Methods 
No 

Acc. p-CMFD TL(1)/p-CMFD TL(4)/p-CMFD 

a* a* a* b* c* a* b* c* 
keff 1.23141 1.23141 1.23141 1.23141 1.23141 1.23141 1.23141 1.23141 

Number of transport 
sweep iterations 2241 438 48 48 49 18 18 18 

Number of p-CMFD 
Power 

 (or JFNK) Iterations 
0 4584 895 893 646 1023 1023 742 

Transport sweep 
calculation time (sec)† 

19874.19
4 3852.734 424.896 433.586 432.902 159.347 159.241 158.804 

Whole-core p-IMFD 
time (sec) 0 0 23.143 13.831 8.467 8.203 5.515 3.536 

Local p-IMFD time 
(sec)  0 0 19.212 12.682 9.307 25.41 18.688 11.893 

Whole-core p-CMFD 
time (sec) 0 38.363 4.177 4.308 4.765 6.353 6.333 6.91 

Total calculation time 
(sec) 19874.33 3891.21 471.662 464.529 455.566 199.425 189.887 181.254 

Speedup 1 5.11 42.14 42.78 43.63 99.66 104.66 109.65 
Percentage of transport 

sweep time in total 
calculation time 

100.0 99.01 90.08 93.34 95.03 79.90 83.86 87.61 
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CONCLUDING REMARKS 

This article presented a further speedup technique for p-CMFD acceleration in the whole-core 
transport calculation, that is also effective for optically thick coarse mesh cells (of assembly size). 
It is based on two-level spatial coarse grid p-CMFD with global/local iterations in the low-order 
calculation. The results show that we obtain fast convergence (even with large coarse-mesh cells), 
if we use a number of global/local iterations in TL(N)/p-CMFD with Krylov algorithms. This is 
owing to the availability of transport partial currents on the interface of two coarse mesh cells, 
allowing rebalance calculation via p-IMFD in each coarse-mesh problem (that can be performed 
in parallel and thus can reduce the local p-IMFD time further). More importantly, the most time-
consuming transport sweep calculation footprint can be reduced further in a major way, if the 
transport sweep operations are performed characteristics by characteristics in parallel. 

As a future work in another direction, the two-level p-CMFD method can be applied to the fast 
reactor analysis. Since the neutron mean free path is quite long in a fast reactor, the computational 
cells of super hexagonal- and rhombic-stencils could be considered, following the procedures 
proposed in Ref. 23, based on the HIRE-theoretic “multigroup” transport equations [24–26] with 
partial current discontinuity factors (PCDFs). 

ACKNOWLEDGMENTS 

The author expresses special thanks to Professor T. Kitada of Osaka University, who invited me 
to write this article for the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ). 
The author also expresses sincere thanks for special associations and friendships of many years to 
Professor T. Takeda of Osaka University (now of Fukui University), Professors K. Kobayashi and 
C. Pyeon of Kyoto University, Professor A. Yamamoto of Nagoya University, Professors H. 
Sekimoto and T. Obara of Tokyo Institute of Technology, Dr. Y. Tahara of Mitsubishi Heavy 
Industries, Ltd., and Dr. M. Tatsumi of Nuclear Engineering International.

The author also expresses thanks to Dr. Seungsu Yuk of Korea Atomic Energy Research Institute 
and Dr. Seongdong Jang of Korea Advanced Institute of Science and Technology, who provided 
valuable assistance during the preparation of this article. 

REFERENCES 

1. M. L. ADAMS and E. W. LARSEN, “Fast Iterative Methods for Discrete Ordinates Particle
Transport Calculations,” Prog. Nucl. Energy, 40, 3 (2002).

2. N. Z. CHO, G. S. LEE, and C. J. PARK, “Fusion of Method of Characteristics and Nodal
Method for a 3-D Whole-Core Transport Calculation,” Trans. Am. Nucl. Soc., 86, 322 (2002).

3. B. Collins, et. al., “Stability and Accuracy of 3D Neutron Transport Simulations Using the
2D/1D Method in MvPACT,” J. of Computational Physics,” 326, 612 (2016).

4. G. Zhang, A. Shieh, W. S. Yang, and Y. S. Jung, “Consistent pCMFD Acceleration Schemes
of the Three-Dimensional Transport Code PROTEUS-MOC,” Nucl.Sci. Eng., 193, 828 (2019).

炉物理の研究　第74号 (2022年3月)



9 

5. G. R. CEFUS and E. W. LARSEN, “Stability Analysis of Coarse-Mesh Rebalance,” Nucl. Sci.
Eng., 105, 31 (1990).

6. K. S. SMITH and J. D. RHODES III, “Full-Core, 2-D, LWR Core Calculations with CASMO-
4E,” Proc. PHYSOR 2002, Seoul, Korea, October 7–10, 2002, American Nuclear Society (2002)
(CD-ROM).

7. N. Z. CHO, G. S. LEE, and C. J. PARK, “On a New Acceleration Method for 3D Whole-Core
Transport Calculations,” Annual Meeting, Sasebo, Japan, March 27–29, 2003, Atomic Energy
Society of Japan (2003).

8. N. Z. CHO, G. S. LEE, and C. J. PARK, “Partial Current-Based CMFD Acceleration of the
2D/1D Fusion Method for 3D Whole-Core Transport Calculations,” Trans. Am. Nucl. Soc.,
88, 594 (2003).

9. N. Z. CHO, “The Partial Current-Based CMFD (p-CMFD) Method Revisited,” Trans. Kor.
Nucl. Soc., Gyeongju, Korea, October 25–26, 2012, Korean Nuclear Society (2012).

10. N. Z. CHO and C. J. PARK, “A Comparison of Coarse Mesh Rebalance and Coarse Mesh
Finite Difference Accelerations for the Neutron Transport Calculations,” Proc. M&C 2003,
Gatlinburg, Tennessee, April 6–11, 2003, American Nuclear Society (2003); see also KAIST
internal report NURAPT-2002-02, (with addendum on p-CMFD);
https://github.com/nzcho/Nurapt-Archives/blob/master/NurapT2002_2rev2.pdf

11. A. YAMAMOTO, “Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron
Transport Calculations,” Nucl. Sci. Eng., 151, 274 (2005).

12. B. KOCHUNAS, A. FITZGERALD, and E. LARSEN, “Fourier Analysis of Iteration Schemes
for k-Eigenvalue Transport Problems with Flux-Dependent Cross Sections,” J. of Comp. Phys.,
345, 294 (2017).

13. S. YUK and N. Z. CHO, “Two-Level Convergence Speedup Schemes for p-CMFD
Acceleration in Neutron Transport Calculation,” Nucl. Sci. Eng., 188, 1 (2017); and
Corrigendum, 188, 303 (2017).

14. N.  Z.  CHO, “An Overview of p-CMFD Acceleration and Its Applications to Reactor Physics
Transport Calculation,” Trans. Am. Nucl. Soc., 117, 1247-1250 (2017).

15. N. Z. CHO, “The Roles of Transport Partial Current Information in Two-Level p-CMFD
Acceleration in the Whole-Core Transport Calculation,” Trans. Am. Nucl. Soc., 121, 1323-
1326 (2019).

16. N. Z. CHO, “Krylov Subspace Wraps Around the Two-Level p-CMFD Acceleration in the
Whole-Core Transport Calculation,” Trans. Am. Nucl. Soc., 123, 1327 (2020).

炉物理の研究　第74号 (2022年3月)

https://github.com/nzcho/Nurapt-Archives/blob/master/NurapT2002_2rev2.pdf


10 

17. D. WANG and S. XIAO, “A Linear Prolongation Approach to Stabilizing CMFD,” Nucl. Sci.
Eng., 190, 45 (2018).

18. A. ZHU, M. JARRETT, Y. XU, B. KOCHUNAS, E. W. LARSEN, and T. DOWNAR, “An
Optimally Diffusive Coarse Mesh Finite Difference Method to Accelerate Neutron Transport
Calculations,” Ann. Nucl. Energy, 95, 116 (2016).

19. Y. SAAD, “Iterative Methods for Sparse Linear Systems,” SIAM, 2003, pp. 231-234
(BiCGSTAB algorithm for Krylov method).

20. H. PARK, D. A. KNOLL, and C. K. NEWMAN, “Nonlinear Acceleration of Transport
Criticality Problems,”  Nucl. Sci, Eng., 172, 52 (2012).

21. M. A. SMITH, E. E. LEWIS, and B.-C. NA, “Benchmark on Deterministic Transport
Calculations Without Spatial Homogenization: A 2-D/3-D MOX Fuel Assembly 3-D
Benchmark,” NEA/NSC/DOC(2003)16, Organisation for Economic Co-operation and
Development, Nuclear Energy Agency (2003).

22. N.  Z.  CHO, “An Enlarged 2-D OECD/NEA Benchmark Problem and Two-Level p-CMFD
Solutions,” Korea Advanced Institute of Science and Technology, June 2020;
https://github.com/nzcho/Nurapt-
Archives/blob/master/NZCho_ANS_W2020_Addendum.4.pdf

23. N. Z. CHO, “A Proposed New Framework for Reactor Physics Analysis with Transport
Calculation,” Trans. Kor. Nucl. Soc., Yeosu, Korea, October 24-26, 2018, Korean Nuclear
Society (2018); https://www.kns.org/files/pre_paper/40/18A-132조남진 I.pdf

24. N. Z. CHO, Y. G. JO, and S. YUK, “Multigroup Transport Equations Derived via
Homogeneity and Isotropy Restoration Theory,” Trans. Am. Nucl. Soc., 115, 592-595 (2016).

25. N.  Z. CHO, Y. G. JO, and S. YUK, “A New Derivation of Multigroup Transport Equations
via Homogeneity and Isotropy Restoration Theory,” Ann. Nucl. Energy, 110, 798 (2017).

26. N.  Z.  CHO, S. Yuk, and Y. G.  JO, “Partial Current Discontinuity Factors Determined via
JFNK in HIRE-Theoretic Multigroup Transport Equations,” Fall Meeting, Sapporo, Japan,
September 13-15, 2017, Atomic Energy Society of Japan (2017).

炉物理の研究　第74号 (2022年3月)

https://github.com/nzcho/Nurapt-Archives/blob/master/NZCho_ANS_W2020_Addendum.4.pdf
https://github.com/nzcho/Nurapt-Archives/blob/master/NZCho_ANS_W2020_Addendum.4.pdf
https://www.kns.org/files/pre_paper/40/18A-132%EC%A1%B0%EB%82%A8%EC%A7%84I.pdf



